Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -49,19 +49,21 @@ if uploaded_file is not None:
|
|
49 |
essay = monkeyReader.readEssay(saved_file_path)
|
50 |
for key, values in essay.items():
|
51 |
st.write(f"{key}: {', '.join(values)}")
|
52 |
-
|
53 |
-
Barttokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
54 |
-
summ_model_path = 'com3dian/Bart-large-paper2slides-summarizer'
|
55 |
-
summarizor = BartForConditionalGeneration.from_pretrained(summ_model_path)
|
56 |
-
exp_model_path = 'com3dian/Bart-large-paper2slides-expander'
|
57 |
-
expandor = BartForConditionalGeneration.from_pretrained(exp_model_path)
|
58 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
-
BartSE = BARTAutoEncoder(summarizor, summarizor, device)
|
60 |
-
del summarizor, expandor
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
summarizor = pipeline("summarization", model=summ_model_path, device = 0)
|
67 |
summ_text = summarizor(document.segmentation['text'], max_length=100, min_length=10, do_sample=False)
|
|
|
49 |
essay = monkeyReader.readEssay(saved_file_path)
|
50 |
for key, values in essay.items():
|
51 |
st.write(f"{key}: {', '.join(values)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
with st.status("Generating slides..."):
|
54 |
+
|
55 |
+
Barttokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
56 |
+
summ_model_path = 'com3dian/Bart-large-paper2slides-summarizer'
|
57 |
+
summarizor = BartForConditionalGeneration.from_pretrained(summ_model_path)
|
58 |
+
exp_model_path = 'com3dian/Bart-large-paper2slides-expander'
|
59 |
+
expandor = BartForConditionalGeneration.from_pretrained(exp_model_path)
|
60 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
BartSE = BARTAutoEncoder(summarizor, summarizor, device)
|
62 |
+
del summarizor, expandor
|
63 |
+
|
64 |
+
document = Document(essay, Barttokenizer)
|
65 |
+
del Barttokenizer
|
66 |
+
length = document.merge(25, 30, BartSE, device)
|
67 |
|
68 |
summarizor = pipeline("summarization", model=summ_model_path, device = 0)
|
69 |
summ_text = summarizor(document.segmentation['text'], max_length=100, min_length=10, do_sample=False)
|