Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,14 @@ import numpy as np
|
|
4 |
import os
|
5 |
from grobidmonkey import reader
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def save_uploaded_file(uploaded_file):
|
8 |
file_path = os.path.join("./uploads", uploaded_file.name)
|
9 |
os.makedirs("./uploads", exist_ok=True) # Create 'uploads' directory if it doesn't exist
|
@@ -40,5 +48,21 @@ if uploaded_file is not None:
|
|
40 |
essay = monkeyReader.readEssay(saved_file_path)
|
41 |
for key, values in essay.items():
|
42 |
st.write(f"{key}: {', '.join(values)}")
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
4 |
import os
|
5 |
from grobidmonkey import reader
|
6 |
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers import BartTokenizer, BartModel, BartForConditionalGeneration
|
9 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
10 |
+
|
11 |
+
from document import Document
|
12 |
+
from BartSE import BARTAutoEncoder
|
13 |
+
|
14 |
+
|
15 |
def save_uploaded_file(uploaded_file):
|
16 |
file_path = os.path.join("./uploads", uploaded_file.name)
|
17 |
os.makedirs("./uploads", exist_ok=True) # Create 'uploads' directory if it doesn't exist
|
|
|
48 |
essay = monkeyReader.readEssay(saved_file_path)
|
49 |
for key, values in essay.items():
|
50 |
st.write(f"{key}: {', '.join(values)}")
|
51 |
+
|
52 |
+
Barttokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
53 |
+
summ_model_path = 'com3dian/Bart-large-paper2slides-summarizer'
|
54 |
+
summarizor = BartForConditionalGeneration.from_pretrained(summ_model_path)
|
55 |
+
exp_model_path = 'com3dian/Bart-large-paper2slides-expander'
|
56 |
+
expandor = BartForConditionalGeneration.from_pretrained(exp_model_path)
|
57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
58 |
+
BartSE = BARTAutoEncoder(summarizor, summarizor, device)
|
59 |
+
del summarizor, expandor
|
60 |
+
|
61 |
+
document = Document(article, Barttokenizer)
|
62 |
+
del Barttokenizer
|
63 |
+
length = document.merge(10, 30, BartSE, device)
|
64 |
+
|
65 |
+
summarizor = pipeline("summarization", model=summ_model_path, device = 0)
|
66 |
+
summ_text = summarizor(document.segmentation['text'], max_length=100, min_length=10, do_sample=False)
|
67 |
+
summ_text = [text['summary_text'] for text in summ_text]
|
68 |
|