com3dian commited on
Commit
0cbdeb5
·
verified ·
1 Parent(s): 2654a92

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -1
app.py CHANGED
@@ -4,6 +4,14 @@ import numpy as np
4
  import os
5
  from grobidmonkey import reader
6
 
 
 
 
 
 
 
 
 
7
  def save_uploaded_file(uploaded_file):
8
  file_path = os.path.join("./uploads", uploaded_file.name)
9
  os.makedirs("./uploads", exist_ok=True) # Create 'uploads' directory if it doesn't exist
@@ -40,5 +48,21 @@ if uploaded_file is not None:
40
  essay = monkeyReader.readEssay(saved_file_path)
41
  for key, values in essay.items():
42
  st.write(f"{key}: {', '.join(values)}")
43
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
 
4
  import os
5
  from grobidmonkey import reader
6
 
7
+ from transformers import pipeline
8
+ from transformers import BartTokenizer, BartModel, BartForConditionalGeneration
9
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
10
+
11
+ from document import Document
12
+ from BartSE import BARTAutoEncoder
13
+
14
+
15
  def save_uploaded_file(uploaded_file):
16
  file_path = os.path.join("./uploads", uploaded_file.name)
17
  os.makedirs("./uploads", exist_ok=True) # Create 'uploads' directory if it doesn't exist
 
48
  essay = monkeyReader.readEssay(saved_file_path)
49
  for key, values in essay.items():
50
  st.write(f"{key}: {', '.join(values)}")
51
+
52
+ Barttokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
53
+ summ_model_path = 'com3dian/Bart-large-paper2slides-summarizer'
54
+ summarizor = BartForConditionalGeneration.from_pretrained(summ_model_path)
55
+ exp_model_path = 'com3dian/Bart-large-paper2slides-expander'
56
+ expandor = BartForConditionalGeneration.from_pretrained(exp_model_path)
57
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
58
+ BartSE = BARTAutoEncoder(summarizor, summarizor, device)
59
+ del summarizor, expandor
60
+
61
+ document = Document(article, Barttokenizer)
62
+ del Barttokenizer
63
+ length = document.merge(10, 30, BartSE, device)
64
+
65
+ summarizor = pipeline("summarization", model=summ_model_path, device = 0)
66
+ summ_text = summarizor(document.segmentation['text'], max_length=100, min_length=10, do_sample=False)
67
+ summ_text = [text['summary_text'] for text in summ_text]
68