Jae-Won Chung
Updated diffusion benchmark and data
c97bae1
raw
history blame
11.2 kB
from __future__ import annotations
import json
import argparse
from typing import Any
from pprint import pprint
from pathlib import Path
from contextlib import suppress
from dataclasses import dataclass, field, asdict
import torch
import pynvml
import numpy as np
from PIL import Image
from transformers.trainer_utils import set_seed
from diffusers import (
ModelMixin, # type: ignore
DiffusionPipeline, # type: ignore
AnimateDiffPipeline, # type: ignore
DDIMScheduler, # type: ignore
MotionAdapter, # type: ignore
)
from diffusers.utils import export_to_gif # pyright: reportPrivateImportUsage=false
from zeus.monitor import ZeusMonitor
# Disable torch gradients globally
torch.set_grad_enabled(False)
@dataclass
class Results:
model: str
num_parameters: dict[str, int]
gpu_model: str
power_limit: int
batch_size: int
num_inference_steps: int
num_frames: int
num_prompts: int
total_runtime: float = 0.0
total_energy: float = 0.0
average_batch_latency: float = 0.0
average_generations_per_second: float = 0.0
average_batch_energy: float = 0.0
average_power_consumption: float = 0.0
peak_memory: float = 0.0
results: list[Result] = field(default_factory=list, repr=False)
@dataclass
class ResultIntermediateBatched:
batch_latency: float = 0.0
batch_energy: float = 0.0
prompts: list[str] = field(default_factory=list)
frames: np.ndarray | list[list[Image.Image]] = np.empty(0)
@dataclass
class Result:
batch_latency: float
sample_energy: float
prompt: str
video_path: str | None
def get_pipeline(model_id: str):
"""Instantiate a Diffusers pipeline from a modes's HuggingFace Hub ID."""
# Load args to give to `from_pretrained` from the model's kwargs.json file
kwargs = build_kwargs(model_id)
# Hack for AnimateDiff
if "animatediff" in model_id:
adapter = MotionAdapter.from_pretrained(model_id, **kwargs)
sd_model_id = "emilianJR/epiCRealism"
sd_kwargs = build_kwargs(sd_model_id)
pipeline = AnimateDiffPipeline.from_pretrained(sd_model_id, motion_adapter=adapter, **sd_kwargs)
scheduler = DDIMScheduler.from_pretrained(
sd_model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline = pipeline.to("cuda:0")
print("\nInstantiated AnimateDiff pipeline:\n", pipeline)
else:
pipeline = DiffusionPipeline.from_pretrained(model_id, **kwargs).to("cuda:0")
print("\nInstantiated pipeline via DiffusionPipeline:\n", pipeline)
return pipeline
def build_kwargs(model_id: str) -> dict:
"""Build the kwargs to pass to the model's `from_pretrained` method."""
kwargs = json.load(open(f"models/{model_id}/kwargs.json"))
with suppress(KeyError):
kwargs["torch_dtype"] = eval(kwargs["torch_dtype"])
# Add additional args
kwargs["safety_checker"] = None
kwargs["revision"] = open(f"models/{model_id}/revision.txt").read().strip()
return kwargs
def load_text_prompts(
path: str,
batch_size: int,
num_batches: int | None = None,
) -> tuple[int, list[list[str]]]:
"""Load the dataset to feed the model and return it as a list of batches of prompts.
Depending on the batch size, the final batch may not be full. The final batch
is dropped in that case. If `num_batches` is not None, only that many batches
is returned. If `num_batches` is None, all batches are returned.
Returns:
Total number of prompts and a list of batches of prompts.
"""
dataset = json.load(open(path))["caption"] * 10
if num_batches is not None:
if len(dataset) < num_batches * batch_size:
raise ValueError("Dataset is too small for the given number of batches.")
dataset = dataset[:num_batches * batch_size]
batched = [dataset[i : i + batch_size] for i in range(0, len(dataset), batch_size)]
if len(batched[-1]) < batch_size:
batched.pop()
return len(batched) * batch_size, batched
def count_parameters(pipeline) -> dict[str, int]:
"""Count the number of parameters in the given pipeline."""
num_params = {}
for name, attr in vars(pipeline).items():
if isinstance(attr, ModelMixin):
num_params[name] = attr.num_parameters(only_trainable=False, exclude_embeddings=True)
elif isinstance(attr, torch.nn.Module):
num_params[name] = sum(p.numel() for p in attr.parameters())
return num_params
def benchmark(args: argparse.Namespace) -> None:
if args.model.startswith("models/"):
args.model = args.model[len("models/") :]
if args.model.endswith("/"):
args.model = args.model[:-1]
set_seed(args.seed)
results_dir = Path(args.result_root) / args.model
results_dir.mkdir(parents=True, exist_ok=True)
benchmark_name = str(results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}")
video_dir = results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}+generated"
video_dir.mkdir(exist_ok=True)
arg_out_filename = f"{benchmark_name}+args.json"
with open(arg_out_filename, "w") as f:
f.write(json.dumps(vars(args), indent=2))
print(args)
print("Benchmark args written to", arg_out_filename)
zeus_monitor = ZeusMonitor()
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
gpu_model = pynvml.nvmlDeviceGetName(handle)
pynvml.nvmlDeviceSetPersistenceMode(handle, pynvml.NVML_FEATURE_ENABLED)
pynvml.nvmlDeviceSetPowerManagementLimit(handle, args.power_limit * 1000)
pynvml.nvmlShutdown()
num_prompts, batched_prompts = load_text_prompts(args.dataset_path, args.batch_size, args.num_batches)
pipeline = get_pipeline(args.model)
# Warmup
print("Warming up with two batches...")
for i in range(2):
_ = pipeline(
prompt=batched_prompts[i],
num_frames=args.num_frames,
num_inference_steps=args.num_inference_steps,
)
rng = torch.manual_seed(args.seed)
intermediates: list[ResultIntermediateBatched] = [
ResultIntermediateBatched(prompts=batch) for batch in batched_prompts
]
torch.cuda.reset_peak_memory_stats(device="cuda:0")
zeus_monitor.begin_window("benchmark", sync_execution=False)
# Build common parameter dict for all batches
params: dict[str, Any] = dict(
num_frames=args.num_frames,
num_inference_steps=args.num_inference_steps,
generator=rng,
)
if args.height is not None:
params["height"] = args.height
if args.width is not None:
params["width"] = args.width
for ind, intermediate in enumerate(intermediates):
print(f"Batch {ind + 1}/{len(intermediates)}")
params["prompt"] = intermediate.prompts
zeus_monitor.begin_window("batch", sync_execution=False)
frames = pipeline(**params).frames
batch_measurements = zeus_monitor.end_window("batch", sync_execution=False)
intermediate.frames = frames
intermediate.batch_latency = batch_measurements.time
intermediate.batch_energy = batch_measurements.total_energy
measurements = zeus_monitor.end_window("benchmark", sync_execution=False)
peak_memory = torch.cuda.max_memory_allocated(device="cuda:0")
results: list[Result] = []
ind = 0
for intermediate in intermediates:
# Some pipelines just return a giant numpy array for all frames.
# In that case, scale frames to uint8 [0, 256] and convert to PIL.Image
if isinstance(intermediate.frames, np.ndarray):
frames = []
for batch in intermediate.frames:
frames.append(
[Image.fromarray((frame * 255).astype(np.uint8)) for frame in batch]
)
intermediate.frames = frames
for frames, prompt in zip(intermediate.frames, intermediate.prompts, strict=True):
if ind % args.save_every == 0:
video_path = str(video_dir / f"{prompt[:200]}.gif")
export_to_gif(frames, video_path)
else:
video_path = None
results.append(
Result(
batch_latency=intermediate.batch_latency,
sample_energy=intermediate.batch_energy / len(intermediate.prompts),
prompt=prompt,
video_path=video_path,
)
)
ind += 1
final_results = Results(
model=args.model,
num_parameters=count_parameters(pipeline),
gpu_model=gpu_model,
power_limit=args.power_limit,
batch_size=args.batch_size,
num_inference_steps=args.num_inference_steps,
num_frames=args.num_frames,
num_prompts=num_prompts,
total_runtime=measurements.time,
total_energy=measurements.total_energy,
average_batch_latency=measurements.time / len(batched_prompts),
average_generations_per_second=num_prompts / measurements.time,
average_batch_energy=measurements.total_energy / len(batched_prompts),
average_power_consumption=measurements.total_energy / measurements.time,
peak_memory=peak_memory,
results=results,
)
with open(f"{benchmark_name}+results.json", "w") as f:
f.write(json.dumps(asdict(final_results), indent=2))
print("Benchmark results written to", f"{benchmark_name}+results.json")
print("Benchmark results:")
pprint(final_results)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=True, help="The model to benchmark.")
parser.add_argument("--dataset-path", type=str, help="Path to the dataset to use.")
parser.add_argument("--result-root", type=str, help="The root directory to save results to.")
parser.add_argument("--batch-size", type=int, default=1, help="The size of each batch of prompts.")
parser.add_argument("--power-limit", type=int, default=300, help="The power limit to set for the GPU in Watts.")
parser.add_argument("--num-inference-steps", type=int, default=50, help="The number of denoising steps.")
parser.add_argument("--num-frames", type=int, default=16, help="The number of frames to generate.")
parser.add_argument("--height", type=int, help="Height of the generated video.")
parser.add_argument("--width", type=int, help="Width of the generated video.")
parser.add_argument("--num-batches", type=int, default=None, help="The number of batches to use from the dataset.")
parser.add_argument("--save-every", type=int, default=10, help="Save images to file every N prompts.")
parser.add_argument("--seed", type=int, default=0, help="The seed to use for the RNG.")
parser.add_argument("--huggingface-token", type=str, help="The HuggingFace token to use.")
args = parser.parse_args()
benchmark(args)