File size: 11,189 Bytes
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
c97bae1
b10121d
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import annotations

import json
import argparse
from typing import Any
from pprint import pprint
from pathlib import Path
from contextlib import suppress
from dataclasses import dataclass, field, asdict

import torch
import pynvml
import numpy as np
from PIL import Image
from transformers.trainer_utils import set_seed
from diffusers import (
    ModelMixin,  # type: ignore
    DiffusionPipeline,  # type: ignore
    AnimateDiffPipeline,  # type: ignore
    DDIMScheduler,  # type: ignore
    MotionAdapter,  # type: ignore
) 
from diffusers.utils import export_to_gif  # pyright: reportPrivateImportUsage=false
from zeus.monitor import ZeusMonitor

# Disable torch gradients globally
torch.set_grad_enabled(False)


@dataclass
class Results:
    model: str
    num_parameters: dict[str, int]
    gpu_model: str
    power_limit: int
    batch_size: int
    num_inference_steps: int
    num_frames: int
    num_prompts: int
    total_runtime: float = 0.0
    total_energy: float = 0.0
    average_batch_latency: float = 0.0
    average_generations_per_second: float = 0.0
    average_batch_energy: float = 0.0
    average_power_consumption: float = 0.0
    peak_memory: float = 0.0
    results: list[Result] = field(default_factory=list, repr=False)


@dataclass
class ResultIntermediateBatched:
    batch_latency: float = 0.0
    batch_energy: float = 0.0
    prompts: list[str] = field(default_factory=list)
    frames: np.ndarray | list[list[Image.Image]] = np.empty(0)


@dataclass
class Result:
    batch_latency: float
    sample_energy: float
    prompt: str
    video_path: str | None


def get_pipeline(model_id: str):
    """Instantiate a Diffusers pipeline from a modes's HuggingFace Hub ID."""
    # Load args to give to `from_pretrained` from the model's kwargs.json file
    kwargs = build_kwargs(model_id)

    # Hack for AnimateDiff
    if "animatediff" in model_id:
        adapter = MotionAdapter.from_pretrained(model_id, **kwargs)
        sd_model_id = "emilianJR/epiCRealism"
        sd_kwargs = build_kwargs(sd_model_id)
        pipeline = AnimateDiffPipeline.from_pretrained(sd_model_id, motion_adapter=adapter, **sd_kwargs)
        scheduler = DDIMScheduler.from_pretrained(
            sd_model_id,
            subfolder="scheduler",
            clip_sample=False,
            timestep_spacing="linspace",
            beta_schedule="linear",
            steps_offset=1,
        )
        pipeline.scheduler = scheduler
        pipeline = pipeline.to("cuda:0")
        print("\nInstantiated AnimateDiff pipeline:\n", pipeline)
    else:
        pipeline = DiffusionPipeline.from_pretrained(model_id, **kwargs).to("cuda:0")
        print("\nInstantiated pipeline via DiffusionPipeline:\n", pipeline)

    return pipeline


def build_kwargs(model_id: str) -> dict:
    """Build the kwargs to pass to the model's `from_pretrained` method."""
    kwargs = json.load(open(f"models/{model_id}/kwargs.json"))
    with suppress(KeyError):
        kwargs["torch_dtype"] = eval(kwargs["torch_dtype"])

    # Add additional args
    kwargs["safety_checker"] = None
    kwargs["revision"] = open(f"models/{model_id}/revision.txt").read().strip()

    return kwargs


def load_text_prompts(
    path: str,
    batch_size: int,
    num_batches: int | None = None,
) -> tuple[int, list[list[str]]]:
    """Load the dataset to feed the model and return it as a list of batches of prompts.

    Depending on the batch size, the final batch may not be full. The final batch
    is dropped in that case. If `num_batches` is not None, only that many batches
    is returned. If `num_batches` is None, all batches are returned.

    Returns:
        Total number of prompts and a list of batches of prompts.
    """
    dataset = json.load(open(path))["caption"] * 10
    if num_batches is not None:
        if len(dataset) < num_batches * batch_size:
            raise ValueError("Dataset is too small for the given number of batches.")
        dataset = dataset[:num_batches * batch_size]
    batched = [dataset[i : i + batch_size] for i in range(0, len(dataset), batch_size)]
    if len(batched[-1]) < batch_size:
        batched.pop()
    return len(batched) * batch_size, batched


def count_parameters(pipeline) -> dict[str, int]:
    """Count the number of parameters in the given pipeline."""
    num_params = {}
    for name, attr in vars(pipeline).items():
        if isinstance(attr, ModelMixin):
            num_params[name] = attr.num_parameters(only_trainable=False, exclude_embeddings=True)
        elif isinstance(attr, torch.nn.Module):
            num_params[name] = sum(p.numel() for p in attr.parameters())
    return num_params


def benchmark(args: argparse.Namespace) -> None:
    if args.model.startswith("models/"):
        args.model = args.model[len("models/") :]
    if args.model.endswith("/"):
        args.model = args.model[:-1]

    set_seed(args.seed)

    results_dir = Path(args.result_root) / args.model
    results_dir.mkdir(parents=True, exist_ok=True)
    benchmark_name = str(results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}")
    video_dir = results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}+generated"
    video_dir.mkdir(exist_ok=True)

    arg_out_filename = f"{benchmark_name}+args.json"
    with open(arg_out_filename, "w") as f:
        f.write(json.dumps(vars(args), indent=2))
    print(args)
    print("Benchmark args written to", arg_out_filename)

    zeus_monitor = ZeusMonitor()

    pynvml.nvmlInit()
    handle = pynvml.nvmlDeviceGetHandleByIndex(0)
    gpu_model = pynvml.nvmlDeviceGetName(handle)
    pynvml.nvmlDeviceSetPersistenceMode(handle, pynvml.NVML_FEATURE_ENABLED)
    pynvml.nvmlDeviceSetPowerManagementLimit(handle, args.power_limit * 1000)
    pynvml.nvmlShutdown()

    num_prompts, batched_prompts = load_text_prompts(args.dataset_path, args.batch_size, args.num_batches)

    pipeline = get_pipeline(args.model)

    # Warmup
    print("Warming up with two batches...")
    for i in range(2):
        _ = pipeline(
            prompt=batched_prompts[i],
            num_frames=args.num_frames,
            num_inference_steps=args.num_inference_steps,
        )

    rng = torch.manual_seed(args.seed)

    intermediates: list[ResultIntermediateBatched] = [
        ResultIntermediateBatched(prompts=batch) for batch in batched_prompts
    ]

    torch.cuda.reset_peak_memory_stats(device="cuda:0")
    zeus_monitor.begin_window("benchmark", sync_execution=False)

    # Build common parameter dict for all batches
    params: dict[str, Any] = dict(
        num_frames=args.num_frames,
        num_inference_steps=args.num_inference_steps,
        generator=rng,
    )
    if args.height is not None:
        params["height"] = args.height
    if args.width is not None:
        params["width"] = args.width

    for ind, intermediate in enumerate(intermediates):
        print(f"Batch {ind + 1}/{len(intermediates)}")

        params["prompt"] = intermediate.prompts

        zeus_monitor.begin_window("batch", sync_execution=False)
        frames = pipeline(**params).frames
        batch_measurements = zeus_monitor.end_window("batch", sync_execution=False)

        intermediate.frames = frames
        intermediate.batch_latency = batch_measurements.time
        intermediate.batch_energy = batch_measurements.total_energy

    measurements = zeus_monitor.end_window("benchmark", sync_execution=False)
    peak_memory = torch.cuda.max_memory_allocated(device="cuda:0")

    results: list[Result] = []
    ind = 0
    for intermediate in intermediates:
        # Some pipelines just return a giant numpy array for all frames.
        # In that case, scale frames to uint8 [0, 256] and convert to PIL.Image
        if isinstance(intermediate.frames, np.ndarray):
            frames = []
            for batch in intermediate.frames:
                frames.append(
                    [Image.fromarray((frame * 255).astype(np.uint8)) for frame in batch]
                )
            intermediate.frames = frames

        for frames, prompt in zip(intermediate.frames, intermediate.prompts, strict=True):
            if ind % args.save_every == 0:
                video_path = str(video_dir / f"{prompt[:200]}.gif")
                export_to_gif(frames, video_path)
            else:
                video_path = None

            results.append(
                Result(
                    batch_latency=intermediate.batch_latency,
                    sample_energy=intermediate.batch_energy / len(intermediate.prompts),
                    prompt=prompt,
                    video_path=video_path,
                )
            )
            ind += 1

    final_results = Results(
        model=args.model,
        num_parameters=count_parameters(pipeline),
        gpu_model=gpu_model,
        power_limit=args.power_limit,
        batch_size=args.batch_size,
        num_inference_steps=args.num_inference_steps,
        num_frames=args.num_frames,
        num_prompts=num_prompts,
        total_runtime=measurements.time,
        total_energy=measurements.total_energy,
        average_batch_latency=measurements.time / len(batched_prompts),
        average_generations_per_second=num_prompts / measurements.time,
        average_batch_energy=measurements.total_energy / len(batched_prompts),
        average_power_consumption=measurements.total_energy / measurements.time,
        peak_memory=peak_memory,
        results=results,
    )

    with open(f"{benchmark_name}+results.json", "w") as f:
        f.write(json.dumps(asdict(final_results), indent=2))
    print("Benchmark results written to", f"{benchmark_name}+results.json")

    print("Benchmark results:")
    pprint(final_results)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="The model to benchmark.")
    parser.add_argument("--dataset-path", type=str, help="Path to the dataset to use.")
    parser.add_argument("--result-root", type=str, help="The root directory to save results to.")
    parser.add_argument("--batch-size", type=int, default=1, help="The size of each batch of prompts.")
    parser.add_argument("--power-limit", type=int, default=300, help="The power limit to set for the GPU in Watts.")
    parser.add_argument("--num-inference-steps", type=int, default=50, help="The number of denoising steps.")
    parser.add_argument("--num-frames", type=int, default=16, help="The number of frames to generate.")
    parser.add_argument("--height", type=int, help="Height of the generated video.")
    parser.add_argument("--width", type=int, help="Width of the generated video.")
    parser.add_argument("--num-batches", type=int, default=None, help="The number of batches to use from the dataset.")
    parser.add_argument("--save-every", type=int, default=10, help="Save images to file every N prompts.")
    parser.add_argument("--seed", type=int, default=0, help="The seed to use for the RNG.")
    parser.add_argument("--huggingface-token", type=str, help="The HuggingFace token to use.")
    args = parser.parse_args()

    benchmark(args)