File size: 14,177 Bytes
b10121d
 
 
c97bae1
b10121d
 
c97bae1
b10121d
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
 
 
 
 
 
 
 
 
 
b10121d
c97bae1
b10121d
 
 
c97bae1
b10121d
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
c97bae1
b10121d
 
c97bae1
 
 
 
 
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c97bae1
b10121d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from __future__ import annotations

import os
import time
import json
import argparse
import multiprocessing as mp
from pprint import pprint
from pathlib import Path
from contextlib import suppress
from dataclasses import dataclass, field, asdict

import torch
import pynvml
import numpy as np
import pandas as pd
from PIL import Image
from datasets import load_dataset, Dataset
from transformers.trainer_utils import set_seed
from transformers import CLIPModel, CLIPProcessor
from diffusers import (
    ModelMixin,  # type: ignore
    AutoPipelineForText2Image,  # type: ignore
    DiffusionPipeline,  # type: ignore
    StableCascadeCombinedPipeline,  # type: ignore
) 
from zeus.monitor import ZeusMonitor

# Disable torch gradients globally
torch.set_grad_enabled(False)


CLIP = "openai/clip-vit-large-patch14"


@dataclass
class Results:
    model: str
    num_parameters: dict[str, int]
    gpu_model: str
    power_limit: int
    batch_size: int
    num_inference_steps: int
    num_prompts: int
    average_clip_score: float = 0.0
    total_runtime: float = 0.0
    total_energy: float = 0.0
    average_batch_latency: float = 0.0
    average_images_per_second: float = 0.0
    average_batch_energy: float = 0.0
    average_power_consumption: float = 0.0
    peak_memory: float = 0.0
    results: list[Result] = field(default_factory=list, repr=False)


@dataclass
class ResultIntermediateBatched:
    batch_latency: float = 0.0
    batch_energy: float = 0.0
    prompts: list[str] = field(default_factory=list)
    images: np.ndarray = np.empty(0)


@dataclass
class Result:
    batch_latency: float
    sample_energy: float
    prompt: str
    image_path: str | None
    clip_score: float


def get_pipeline(model_id: str):
    """Instantiate a Diffusers pipeline from a modes's HuggingFace Hub ID."""
    # Load args to give to `from_pretrained` from the model's kwargs.json file
    kwargs = json.load(open(f"models/{model_id}/kwargs.json"))
    with suppress(KeyError):
        kwargs["torch_dtype"] = eval(kwargs["torch_dtype"])

    # Add additional args
    kwargs["safety_checker"] = None
    kwargs["revision"] = open(f"models/{model_id}/revision.txt").read().strip()

    # Hack for stable-cascade, which defaults to only a part of the model.
    if model_id == "stabilityai/stable-cascade":
        pipeline = StableCascadeCombinedPipeline.from_pretrained(model_id, **kwargs).to("cuda:0")
        print("\nInstantiated pipeline via StableCascadeCombinedPipeline:\n", pipeline)
    else:
        try:
            pipeline =  AutoPipelineForText2Image.from_pretrained(model_id, **kwargs).to("cuda:0")
            print("\nInstantiated pipeline via AutoPipelineForText2Image:\n", pipeline)
        except ValueError:
            pipeline = DiffusionPipeline.from_pretrained(model_id, **kwargs).to("cuda:0")
            print("\nInstantiated pipeline via DiffusionPipeline:\n", pipeline)

    return pipeline


def load_partiprompts(
    batch_size: int,
    seed: int,
    num_batches: int | None = None,
) -> tuple[int, list[list[str]]]:
    """Load the parti-prompts dataset and return it as a list of batches of prompts.

    Depending on the batch size, the final batch may not be full. The final batch
    is dropped in that case. If `num_batches` is not None, only that many batches
    is returned. If `num_batches` is None, all batches are returned.

    Returns:
        Total number of prompts and a list of batches of prompts.
    """
    dataset = load_dataset("nateraw/parti-prompts", split="train").shuffle(seed=seed)
    assert isinstance(dataset, Dataset)
    if num_batches is not None:
        dataset = dataset.select(range(min(num_batches * batch_size, len(dataset))))
    prompts: list[str] = dataset["Prompt"]
    batched = [prompts[i : i + batch_size] for i in range(0, len(prompts), batch_size)]
    if len(batched[-1]) < batch_size:
        batched.pop()
    return len(batched) * batch_size, batched


def power_monitor(csv_path: str, gpu_indices: list[int], chan: mp.SimpleQueue) -> None:
    pynvml.nvmlInit()
    handles = [pynvml.nvmlDeviceGetHandleByIndex(i) for i in gpu_indices]

    fields = [
        (pynvml.NVML_FI_DEV_POWER_AVERAGE, pynvml.NVML_POWER_SCOPE_GPU),
        (pynvml.NVML_FI_DEV_POWER_AVERAGE, pynvml.NVML_POWER_SCOPE_MEMORY),
    ]

    columns = ["timestamp"] + sum([[f"gpu{i}", f"vram{i}"] for i in gpu_indices], [])
    power: list[list] = []
    while chan.empty():
        row = [time.monotonic()]
        values = [pynvml.nvmlDeviceGetFieldValues(h, fields) for h in handles]
        for value in values:
            row.extend((value[0].value.uiVal, value[1].value.uiVal))
        power.append(row)
        time.sleep(max(0.0, 0.1 - (time.monotonic() - row[0])))

    pd.DataFrame(power, columns=columns).to_csv(csv_path, index=False)


def calculate_clip_score(
    model: CLIPModel,
    processor: CLIPProcessor,
    images_np: np.ndarray,
    text: list[str],
) -> torch.Tensor:
    """Calculate the CLIP score for each image and prompt pair.

    `images_np` is assumed to be already scaled to [0, 255] and in uint8 format.

    Returns:
        The clip score of each image and prompt as a list of floats.
        Tensor shape is (batch size,).
    """
    model = model.to("cuda:0")

    images = list(torch.from_numpy(images_np).permute(0, 3, 1, 2))
    assert len(images) == len(text)
    
    processed_input = processor(text=text, images=images, return_tensors="pt", padding=True)
    img_features = model.get_image_features(processed_input["pixel_values"].to("cuda:0"))
    img_features = img_features / img_features.norm(p=2, dim=-1, keepdim=True)

    max_position_embeddings = model.config.text_config.max_position_embeddings
    if processed_input["attention_mask"].shape[-1] > max_position_embeddings:
        print(
            f"Input attention mask is larger than max_position_embeddings. "
            f"Truncating the attention mask to {max_position_embeddings}."
        )
        processed_input["attention_mask"] = processed_input["attention_mask"][..., :max_position_embeddings]
        processed_input["input_ids"] = processed_input["input_ids"][..., :max_position_embeddings]

    txt_features = model.get_text_features(
        processed_input["input_ids"].to("cuda:0"), processed_input["attention_mask"].to("cuda:0")
    )
    txt_features = txt_features / txt_features.norm(p=2, dim=-1, keepdim=True)

    scores = 100 * (img_features * txt_features).sum(axis=-1)
    scores = torch.max(scores, torch.zeros_like(scores))
    return scores


def count_parameters(pipeline) -> dict[str, int]:
    """Count the number of parameters in the given pipeline."""
    num_params = {}
    for name, attr in vars(pipeline).items():
        if isinstance(attr, ModelMixin):
            num_params[name] = attr.num_parameters(only_trainable=False, exclude_embeddings=True)
        elif isinstance(attr, torch.nn.Module):
            num_params[name] = sum(p.numel() for p in attr.parameters())
    return num_params


def benchmark(args: argparse.Namespace) -> None:
    os.environ["HF_TOKEN"] = args.huggingface_token

    if args.model.startswith("models/"):
        args.model = args.model[len("models/") :]
    if args.model.endswith("/"):
        args.model = args.model[:-1]

    set_seed(args.seed)

    results_dir = Path(args.result_root) / args.model
    results_dir.mkdir(parents=True, exist_ok=True)
    benchmark_name = str(results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}")
    image_dir = results_dir / f"bs{args.batch_size}+pl{args.power_limit}+steps{args.num_inference_steps}+generated"
    image_dir.mkdir(exist_ok=True)

    arg_out_filename = f"{benchmark_name}+args.json"
    with open(arg_out_filename, "w") as f:
        f.write(json.dumps(vars(args), indent=2))
    print(args)
    print("Benchmark args written to", arg_out_filename)

    zeus_monitor = ZeusMonitor()

    pynvml.nvmlInit()
    handle = pynvml.nvmlDeviceGetHandleByIndex(0)
    gpu_model = pynvml.nvmlDeviceGetName(handle)
    pynvml.nvmlDeviceSetPersistenceMode(handle, pynvml.NVML_FEATURE_ENABLED)
    pynvml.nvmlDeviceSetPowerManagementLimit(handle, args.power_limit * 1000)
    pynvml.nvmlShutdown()

    num_prompts, batched_prompts = load_partiprompts(args.batch_size, args.seed, args.num_batches)

    pipeline = get_pipeline(args.model)

    # Warmup
    print("Warming up with five batches...")
    for i in range(5):
        _ = pipeline(
            batched_prompts[i],
            num_inference_steps=args.num_inference_steps,
            output_type="np",
        )

    rng = torch.manual_seed(args.seed)

    images = []
    intermediates: list[ResultIntermediateBatched] = [
        ResultIntermediateBatched(prompts=batch) for batch in batched_prompts
    ]

    pmon = None
    pmon_chan = None
    if args.monitor_power:
        pmon_chan = mp.SimpleQueue()
        pmon = mp.get_context("spawn").Process(
            target=power_monitor,
            args=(f"{benchmark_name}+power.csv", [g.gpu_index for g in zeus_monitor.gpus.gpus], pmon_chan),
        )
        pmon.start()

    torch.cuda.reset_peak_memory_stats(device="cuda:0")
    zeus_monitor.begin_window("benchmark", sync_execution=False)

    for ind, intermediate in enumerate(intermediates):
        print(f"Batch {ind + 1}/{len(intermediates)}")
        zeus_monitor.begin_window("batch", sync_execution=False)
        images = pipeline(
            intermediate.prompts,
            generator=rng,
            num_inference_steps=args.num_inference_steps,
            output_type="np",
        ).images
        batch_measurements = zeus_monitor.end_window("batch", sync_execution=False)

        intermediate.images = images
        intermediate.batch_latency = batch_measurements.time
        intermediate.batch_energy = batch_measurements.total_energy

    measurements = zeus_monitor.end_window("benchmark", sync_execution=False)
    peak_memory = torch.cuda.max_memory_allocated(device="cuda:0")

    if pmon is not None and pmon_chan is not None:
        pmon_chan.put("stop")
        pmon.join(timeout=5.0)
        pmon.terminate()

    # Scale images to [0, 256] and convert to uint8
    for intermediate in intermediates:
        intermediate.images = (intermediate.images * 255).astype("uint8")

    # Compute the CLIP score for each image and prompt pair.
    # Code was mostly inspired from torchmetrics.multimodal.clip_score, but
    # adapted here to calculate the CLIP score for each image and prompt pair.
    clip_model: CLIPModel = CLIPModel.from_pretrained(CLIP).cuda()  # type: ignore
    clip_processor: CLIPProcessor = CLIPProcessor.from_pretrained(CLIP)  # type: ignore
    batch_clip_scores = []
    for intermediate in intermediates:
        clip_score = calculate_clip_score(
            clip_model,
            clip_processor,
            intermediate.images,
            intermediate.prompts,
        )
        batch_clip_scores.append(clip_score.tolist())

    results: list[Result] = []
    ind = 0
    for intermediate, batch_clip_score in zip(intermediates, batch_clip_scores, strict=True):
        for image, prompt, clip_score in zip(
            intermediate.images,
            intermediate.prompts,
            batch_clip_score,
            strict=True,
        ):
            if ind % args.image_save_every == 0:
                image_path = str(image_dir / f"{prompt}.png")
                Image.fromarray(image).save(image_path)
            else:
                image_path = None

            results.append(
                Result(
                    batch_latency=intermediate.batch_latency,
                    sample_energy=intermediate.batch_energy / len(intermediate.prompts),
                    prompt=prompt,
                    image_path=image_path,
                    clip_score=clip_score,
                )
            )
            ind += 1

    final_results = Results(
        model=args.model,
        num_parameters=count_parameters(pipeline),
        gpu_model=gpu_model,
        power_limit=args.power_limit,
        batch_size=args.batch_size,
        num_inference_steps=args.num_inference_steps,
        num_prompts=num_prompts,
        average_clip_score=sum(r.clip_score for r in results) / len(results),
        total_runtime=measurements.time,
        total_energy=measurements.total_energy,
        average_batch_latency=measurements.time / len(batched_prompts),
        average_images_per_second=num_prompts / measurements.time,
        average_batch_energy=measurements.total_energy / len(batched_prompts),
        average_power_consumption=measurements.total_energy / measurements.time,
        peak_memory=peak_memory,
        results=results,
    )

    with open(f"{benchmark_name}+results.json", "w") as f:
        f.write(json.dumps(asdict(final_results), indent=2))
    print("Benchmark results written to", f"{benchmark_name}+results.json")

    print("Benchmark results:")
    pprint(final_results)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, required=True, help="The model to benchmark.")
    parser.add_argument("--result-root", type=str, help="The root directory to save results to.")
    parser.add_argument("--batch-size", type=int, default=1, help="The size of each batch of prompts.")
    parser.add_argument("--power-limit", type=int, default=300, help="The power limit to set for the GPU in Watts.")
    parser.add_argument("--num-inference-steps", type=int, default=50, help="The number of denoising steps.")
    parser.add_argument("--num-batches", type=int, default=None, help="The number of batches to use from the dataset.")
    parser.add_argument("--image-save-every", type=int, default=10, help="Save images to file every N prompts.")
    parser.add_argument("--seed", type=int, default=0, help="The seed to use for the RNG.")
    parser.add_argument("--huggingface-token", type=str, help="The HuggingFace token to use.")
    parser.add_argument("--monitor-power", default=False, action="store_true", help="Whether to monitor power over time.")
    args = parser.parse_args()

    benchmark(args)