File size: 2,492 Bytes
7535af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83cca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7535af8
 
 
 
0aa9235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from transformers import pipeline

# Available models for zero-shot classification
AVAILABLE_MODELS = [
    "mjwong/multilingual-e5-large-instruct-xnli-anli",
    "mjwong/multilingual-e5-base-xnli-anli",
    "mjwong/multilingual-e5-large-xnli-anli",
    "mjwong/mcontriever-msmarco-xnli",
    "mjwong/mcontriever-xnli"
]

def classify_text(model_name, text, labels):
    classifier = pipeline("zero-shot-classification", model=model_name)
    labels_list = [label.strip() for label in labels.split(",")]
    result = classifier(text, candidate_labels=labels_list)
    return {label: score for label, score in zip(result["labels"], result["scores"])}

# Example Input
examples = [["One day I will see the world", "travel, live, die, future"]]

# Define the Gradio interface
css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    background: none rgb(66, 133, 244) !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("# Zero-Shot Text Classifier")
    gr.Markdown("Select a model, enter text, and a set of labels to classify it using a zero-shot classification model.")
    
    model_dropdown = gr.Dropdown(AVAILABLE_MODELS, label="Choose Model")
    
    with gr.Row():
        text_input = gr.Textbox(label="Enter Text", placeholder="Type or paste text here...")
        label_input = gr.Textbox(label="Enter Labels (comma-separated)", placeholder="e.g., sports, politics, technology")
    
    output_label = gr.Label(label="Classification Scores")
    
    submit_button = gr.Button("Classify")
    submit_button.click(fn=classify_text, inputs=[model_dropdown, text_input, label_input], outputs=output_label)
    
    gr.Examples(examples, inputs=[text_input, label_input])

# Launch the app
if __name__ == "__main__":
    iface.launch()