import gradio as gr from transformers import pipeline # Load your trained model model_path = "mjpsm/excuses-classification-model" classifier = pipeline("text-classification", model=model_path) # Map numeric labels to readable form id2label = {"LABEL_0": "not_excuse", "LABEL_1": "excuse"} # Inference function def classify_user_input(user_message): result = classifier(user_message)[0] label = id2label.get(result["label"], result["label"]) confidence = round(result["score"] * 100, 2) return f"Prediction: {label}\nConfidence: {confidence}%" # Gradio interface demo = gr.Interface( fn=classify_user_input, inputs=gr.Textbox( lines=4, placeholder="Type your excuse or message here...", label="Your Message" ), outputs=gr.Textbox(label="Classification Result"), title="🧠 Excuse Classifier", description="Type any message below and see if it's classified as an excuse or not.", ) # Launch the app if __name__ == "__main__": demo.launch()