|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
model_path = "mjpsm/confidence-classifier-updated" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
id2label = model.config.id2label |
|
|
|
|
|
def classify_confidence(statement): |
|
inputs = tokenizer(statement, return_tensors="pt", truncation=True) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = F.softmax(logits, dim=1) |
|
pred_id = torch.argmax(probs, dim=1).item() |
|
label = id2label[pred_id] |
|
confidence_score = probs[0][pred_id].item() |
|
return f"🧠 Prediction: {label} ({confidence_score:.2%} confidence)" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=classify_confidence, |
|
inputs=gr.Textbox(lines=4, placeholder="Enter a statement..."), |
|
outputs="text", |
|
title="🧠 Confidence Statement Classifier", |
|
description="Enter a statement to classify its level of confidence using a fine-tuned AI model." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|
|
|
|
|