Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model from the Hub or local directory
|
6 |
+
model_name = "mjpsm/recommendation-overview-classification-model" # 🔁 Replace with your model path
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
id2label = model.config.id2label
|
10 |
+
|
11 |
+
# Inference function
|
12 |
+
def predict_tag(text):
|
13 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
logits = outputs.logits
|
17 |
+
predicted_class_id = torch.argmax(logits, dim=1).item()
|
18 |
+
predicted_label = id2label[predicted_class_id]
|
19 |
+
return predicted_label
|
20 |
+
|
21 |
+
# Gradio UI
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=predict_tag,
|
24 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter student reflection..."),
|
25 |
+
outputs="text",
|
26 |
+
title="🧠 Recommendation Overview Classifier",
|
27 |
+
description="Enter a student's reflection after a math game. The model will return a motivational recommendation tag.",
|
28 |
+
examples=[
|
29 |
+
"I got frustrated when I made a mistake but I didn’t give up.",
|
30 |
+
"I asked my classmate for help and it finally made sense.",
|
31 |
+
"It felt like budgeting in real life when I played that part of the game.",
|
32 |
+
"Even though I was confused, I tried a new strategy and it worked.",
|
33 |
+
],
|
34 |
+
)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
demo.launch()
|