Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load model and tokenizer from Hugging Face Hub | |
model_name = "mjpsm/Positive-Affirmations-Model" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Generation function | |
def generate_affirmation(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_new_tokens=100, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.95, | |
do_sample=True | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio interface | |
demo = gr.Interface( | |
fn=generate_affirmation, | |
inputs=gr.Textbox(label="Describe the player situation (e.g., 'struggled with algebra')"), | |
outputs=gr.Textbox(label="AI Affirmation"), | |
title="Positive Affirmation Generator", | |
description="Describe a learning moment, and the model will generate a motivating affirmation." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |