Spaces:
Running
Running
File size: 1,093 Bytes
d407fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import AutoTokenizer
import torch
from model import EnergySmellsDetector
from config import SMELLS, BEST_THRESHOLD
TOKENIZER = "microsoft/graphcodebert-base"
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)
model = EnergySmellsDetector.load_model_from_hf()
def round_logit(logits, threshold):
logits = (logits > threshold).to(int)
return logits.cpu().numpy()
def greet(code_snippet):
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True)
with torch.no_grad():
logits = model(**inputs)[0]
rounded_logits = round_logit(logits, BEST_THRESHOLD)
return f"{dict(zip(SMELLS, map(int, rounded_logits)))}"
textbox = gr.Textbox(label="Enter your code snippet", placeholder="Here goes your code")
description = "An application to identify whether your code has energy smells or not. It predicts the presence of 9 different energy smells."
title = "Energy Smells Detector"
gr.Interface(
title=title,
description=description,
inputs=textbox,
fn=greet,
outputs="text"
).launch()
|