Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						1c2b775
	
1
								Parent(s):
							
							76168c9
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -2,30 +2,13 @@ import gradio as gr | |
| 2 | 
             
            import models
         | 
| 3 | 
             
            import pandas as pd
         | 
| 4 | 
             
            import theme
         | 
|  | |
| 5 |  | 
| 6 | 
            -
            text = "<h1 style='text-align: center; color: # | 
| 7 | 
            -
             | 
| 8 | 
            -
            text1 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>First option"
         | 
| 9 | 
            -
            text2 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>Second option"
         | 
| 10 | 
            -
            text3 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Compute and compare TCOs"
         | 
| 11 | 
            -
            text4 = "The cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
         | 
| 12 | 
             
            description=f"""
         | 
| 13 | 
            -
            <p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment | 
| 14 | 
            -
            <p> | 
| 15 | 
            -
            """
         | 
| 16 | 
            -
            markdown = """
         | 
| 17 | 
            -
            <div style="
         | 
| 18 | 
            -
                background-color: #f0ba2d;
         | 
| 19 | 
            -
                color: #050f19;
         | 
| 20 | 
            -
                border-radius: 10px;
         | 
| 21 | 
            -
                padding: 3px;
         | 
| 22 | 
            -
                margin: 0 auto;
         | 
| 23 | 
            -
                width: 150px;
         | 
| 24 | 
            -
                text-align: center;
         | 
| 25 | 
            -
                font-size: 18px;
         | 
| 26 | 
            -
            ">
         | 
| 27 | 
            -
            Comparison
         | 
| 28 | 
            -
            </div>
         | 
| 29 | 
             
            """
         | 
| 30 |  | 
| 31 | 
             
            def on_use_case_change(use_case):
         | 
| @@ -36,34 +19,25 @@ def on_use_case_change(use_case): | |
| 36 | 
             
                else:
         | 
| 37 | 
             
                    return gr.update(value=50), gr.update(value=10)
         | 
| 38 |  | 
| 39 | 
            -
            def compare_info(tco1, tco2,  | 
| 40 | 
            -
                 | 
| 41 | 
            -
                 | 
| 42 | 
            -
                
         | 
| 43 | 
            -
                if r < 1:
         | 
| 44 | 
            -
                    comparison_result = f"The cost/request of the second {dropdown2} service is {1/r:.5f} times more expensive than the one of the first {dropdown} service."
         | 
| 45 | 
            -
                    if labor_cost1 > labor_cost2:
         | 
| 46 | 
            -
                        meeting_point = (labor_cost2 - labor_cost1) / (tco1 - tco2)
         | 
| 47 | 
            -
                        comparison_result3 = f"The number of requests you need to achieve in a month to have the labor cost of the {dropdown} service be absorbed and both solution TCOs be equal would be of {meeting_point:.0f}."
         | 
| 48 |  | 
| 49 | 
            -
                 | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 |  | 
| 55 | 
            -
                 | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
                 | 
| 59 | 
            -
                 | 
| 60 | 
            -
                 | 
| 61 | 
            -
             | 
| 62 | 
            -
                 | 
| 63 | 
            -
                <br>
         | 
| 64 | 
            -
                <p> {comparison_result3} </p>
         | 
| 65 | 
            -
                """
         | 
| 66 | 
            -
                return info
         | 
| 67 |  | 
| 68 | 
             
            def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2):
         | 
| 69 | 
             
                list_values = []
         | 
| @@ -79,14 +53,15 @@ def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, late | |
| 79 | 
             
                formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.0f}'.format)
         | 
| 80 |  | 
| 81 | 
             
                styled_data = formatted_data.style\
         | 
| 82 | 
            -
                    .set_properties(**{'background-color': '# | 
| 83 | 
             
                    .to_html()
         | 
|  | |
| 84 |  | 
| 85 | 
            -
                return gr.update(value= | 
| 86 |  | 
| 87 | 
             
            def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
         | 
| 88 |  | 
| 89 | 
            -
                request_ranges =  | 
| 90 | 
             
                costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
         | 
| 91 | 
             
                costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
         | 
| 92 |  | 
| @@ -96,7 +71,7 @@ def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2): | |
| 96 | 
             
                    "AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
         | 
| 97 | 
             
                    }
         | 
| 98 | 
             
                )
         | 
| 99 | 
            -
                return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title=" | 
| 100 |  | 
| 101 | 
             
            style = theme.Style()
         | 
| 102 |  | 
| @@ -152,13 +127,16 @@ with gr.Blocks(theme=style) as demo: | |
| 152 | 
             
                                tco_formula2 = gr.Markdown()
         | 
| 153 |  | 
| 154 | 
             
                with gr.Row(variant='panel'):
         | 
| 155 | 
            -
                    with gr.Column( | 
| 156 | 
            -
                         | 
| 157 | 
            -
             | 
| 158 | 
            -
                         | 
| 159 | 
            -
             | 
| 160 | 
            -
             | 
|  | |
|  | |
|  | |
| 161 |  | 
| 162 | 
            -
                compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco1, tco_formula, latency, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco2, tco_formula2, latency2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table).then(compare_info, inputs=[tco1, tco2,  | 
| 163 |  | 
| 164 | 
             
            demo.launch(debug=True)
         | 
|  | |
| 2 | 
             
            import models
         | 
| 3 | 
             
            import pandas as pd
         | 
| 4 | 
             
            import theme
         | 
| 5 | 
            +
            import matplotlib.pyplot as plt
         | 
| 6 |  | 
| 7 | 
            +
            text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>TCO Comparison Calculator"
         | 
| 8 | 
            +
            text2 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
         | 
|  | |
|  | |
|  | |
|  | |
| 9 | 
             
            description=f"""
         | 
| 10 | 
            +
            <p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment.</p> 
         | 
| 11 | 
            +
            <p>Please note that we focus on getting the service up and running, but not the maintenance that follows.</p>
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 12 | 
             
            """
         | 
| 13 |  | 
| 14 | 
             
            def on_use_case_change(use_case):
         | 
|  | |
| 19 | 
             
                else:
         | 
| 20 | 
             
                    return gr.update(value=50), gr.update(value=10)
         | 
| 21 |  | 
| 22 | 
            +
            def compare_info(tco1, tco2, dropdown, dropdown2):
         | 
| 23 | 
            +
                # Create a bar chart
         | 
| 24 | 
            +
                services = [dropdown, dropdown2]
         | 
| 25 | 
            +
                costs_to_compare = [tco1, tco2]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 |  | 
| 27 | 
            +
                plt.figure(figsize=(6, 4))
         | 
| 28 | 
            +
                plt.bar(services, costs_to_compare, color=['red', 'green'])
         | 
| 29 | 
            +
                plt.xlabel('AI option services', fontsize=10)
         | 
| 30 | 
            +
                plt.ylabel('($) Cost/Request', fontsize=10)
         | 
| 31 | 
            +
                plt.title('Comparison of Cost/Request', fontsize=14)
         | 
| 32 |  | 
| 33 | 
            +
                # Customize x-axis labels
         | 
| 34 | 
            +
                #plt.xticks(rotation=30, ha='right')  # Rotate by 30 degrees and align to the right
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                # Save the plot to a file or display it
         | 
| 37 | 
            +
                plt.tight_layout()
         | 
| 38 | 
            +
                plt.savefig('cost_comparison.png')  # Save to a file
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                return gr.update(value='cost_comparison.png')
         | 
|  | |
|  | |
|  | |
|  | |
| 41 |  | 
| 42 | 
             
            def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2):
         | 
| 43 | 
             
                list_values = []
         | 
|  | |
| 53 | 
             
                formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.0f}'.format)
         | 
| 54 |  | 
| 55 | 
             
                styled_data = formatted_data.style\
         | 
| 56 | 
            +
                    .set_properties(**{'background-color': '#ffffff', 'color': '#000000', 'border-color': '#e0e0e0', 'border-width': '1px', 'border-style': 'solid'})\
         | 
| 57 | 
             
                    .to_html()
         | 
| 58 | 
            +
                centered_styled_data = f"<center>{styled_data}</center>"
         | 
| 59 |  | 
| 60 | 
            +
                return gr.update(value=centered_styled_data)
         | 
| 61 |  | 
| 62 | 
             
            def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
         | 
| 63 |  | 
| 64 | 
            +
                request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 2000001, 100000))
         | 
| 65 | 
             
                costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
         | 
| 66 | 
             
                costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
         | 
| 67 |  | 
|  | |
| 71 | 
             
                    "AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
         | 
| 72 | 
             
                    }
         | 
| 73 | 
             
                )
         | 
| 74 | 
            +
                return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Set-up TCO for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])
         | 
| 75 |  | 
| 76 | 
             
            style = theme.Style()
         | 
| 77 |  | 
|  | |
| 127 | 
             
                                tco_formula2 = gr.Markdown()
         | 
| 128 |  | 
| 129 | 
             
                with gr.Row(variant='panel'):
         | 
| 130 | 
            +
                    with gr.Column():
         | 
| 131 | 
            +
                        with gr.Row():
         | 
| 132 | 
            +
                            table = gr.Markdown()
         | 
| 133 | 
            +
                        with gr.Row():
         | 
| 134 | 
            +
                            with gr.Column(scale=1):
         | 
| 135 | 
            +
                                image = gr.Image()
         | 
| 136 | 
            +
                                info = gr.Markdown(text2)
         | 
| 137 | 
            +
                            with gr.Column(scale=2):
         | 
| 138 | 
            +
                                plot = gr.LinePlot(visible=False)
         | 
| 139 |  | 
| 140 | 
            +
                compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco1, tco_formula, latency, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco2, tco_formula2, latency2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table).then(compare_info, inputs=[tco1, tco2, dropdown, dropdown2], outputs=image).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)
         | 
| 141 |  | 
| 142 | 
             
            demo.launch(debug=True)
         | 

