import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the model and tokenizer with authentication token if needed model_name = "Flmc/DISC-MedLLM" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # Function to generate responses def generate_response(input_text): if not input_text.strip(): return "Please enter some text to generate a response." inputs = tokenizer(input_text, return_tensors="pt") if torch.cuda.is_available(): inputs = inputs.to("cuda") model.to("cuda") outputs = model.generate(**inputs, max_new_tokens=150) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Flmc/DISC-MedLLM") if __name__ == "__main__": iface.launch()