Upload dtxutils.py
Browse files- dtxutils.py +343 -0
    	
        dtxutils.py
    ADDED
    
    | @@ -0,0 +1,343 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from utils.pharmap_utils.meshutils import nct_to_mesh_term, mesh_term_to_id, df_mesh, df_mesh_ct
         | 
| 2 | 
            +
            from utils.pharmap_utils.cid import CaseInsensitiveDict
         | 
| 3 | 
            +
            from utils.pharmap_utils.dictutils import *
         | 
| 4 | 
            +
            import re
         | 
| 5 | 
            +
            import streamlit as st
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            # mesh list extract
         | 
| 9 | 
            +
            def meshtrm_lst_xtract(nct_value):
         | 
| 10 | 
            +
            	try:
         | 
| 11 | 
            +
            		mesh_term = nct_to_mesh_term[nct_value]
         | 
| 12 | 
            +
            		mesh_term_list = list(mesh_term)
         | 
| 13 | 
            +
            		return mesh_term_list
         | 
| 14 | 
            +
            	except:
         | 
| 15 | 
            +
            		pass
         | 
| 16 | 
            +
             | 
| 17 | 
            +
             | 
| 18 | 
            +
            @st.cache(suppress_st_warning=True, allow_output_mutation=True)
         | 
| 19 | 
            +
            # type extract fun
         | 
| 20 | 
            +
            def type_extract(mesh_term_list):
         | 
| 21 | 
            +
            	mesh_term_list = [mesh_term_list] if isinstance(mesh_term_list, str) else mesh_term_list
         | 
| 22 | 
            +
            	# print('mesh_term_list: ',mesh_term_list)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            	# l2_map_lst=[]
         | 
| 25 | 
            +
            	uid_lst = []
         | 
| 26 | 
            +
            	if mesh_term_list is not None:
         | 
| 27 | 
            +
            		for val in mesh_term_list:
         | 
| 28 | 
            +
            			# print('value inside uid forloop:',val)
         | 
| 29 | 
            +
            			try:
         | 
| 30 | 
            +
            				# print('Inside get uid')
         | 
| 31 | 
            +
            				uid = mesh_term_to_id[val]
         | 
| 32 | 
            +
            				uid_lst.append(uid)
         | 
| 33 | 
            +
            				# print(uid_lst)
         | 
| 34 | 
            +
            				if uid_lst is None:
         | 
| 35 | 
            +
            					uid_lst = []
         | 
| 36 | 
            +
            			except:
         | 
| 37 | 
            +
            				pass
         | 
| 38 | 
            +
            				# print('error in get uid list')
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            				# get mesh num
         | 
| 41 | 
            +
            		mesh_num_xtract_lst = []
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            		for val in uid_lst:
         | 
| 44 | 
            +
            			try:
         | 
| 45 | 
            +
            				# print('Inside get mesh num')
         | 
| 46 | 
            +
            				mesh_num_xtract = df_mesh.loc[df_mesh['ui'] == val, 'mesh_number'].iloc[0]
         | 
| 47 | 
            +
            				mesh_num_xtract_lst.append(mesh_num_xtract)
         | 
| 48 | 
            +
            				# print(mesh_num_xtract_lst)
         | 
| 49 | 
            +
            				if ',' in mesh_num_xtract_lst[0]:
         | 
| 50 | 
            +
            					mesh_num_xtract_lst = mesh_num_xtract_lst[0].split(", ")
         | 
| 51 | 
            +
            					# print('mesh_num_xtract_lst after spltting',mesh_num_xtract_lst)
         | 
| 52 | 
            +
            			except:
         | 
| 53 | 
            +
            				pass
         | 
| 54 | 
            +
            				# print('error in get mesh num')
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            		# mesh number extract l2
         | 
| 57 | 
            +
            		l2_map_lst = []
         | 
| 58 | 
            +
            		for val in mesh_num_xtract_lst:
         | 
| 59 | 
            +
            			# print('Inside l2map for loop',val)
         | 
| 60 | 
            +
            			search_value = val[:3]
         | 
| 61 | 
            +
            			# print('printing search value:',search_value)
         | 
| 62 | 
            +
            			try:
         | 
| 63 | 
            +
            				l2_map = df_mesh.loc[df_mesh['mesh_number'] == search_value, 'name'].iloc[0]
         | 
| 64 | 
            +
            				# print(l2_map)
         | 
| 65 | 
            +
            				l2_map_lst.append(l2_map)
         | 
| 66 | 
            +
            				# print(l2_map_lst)
         | 
| 67 | 
            +
            				if l2_map_lst is None:
         | 
| 68 | 
            +
            					l2_map_lst = []
         | 
| 69 | 
            +
            			except:
         | 
| 70 | 
            +
            				pass
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            		l2_map_lst = list(set(l2_map_lst))
         | 
| 73 | 
            +
            		# print('finaloutput',l2_map_lst)
         | 
| 74 | 
            +
            		return l2_map_lst
         | 
| 75 | 
            +
             | 
| 76 | 
            +
             | 
| 77 | 
            +
            def split_values(col_val):
         | 
| 78 | 
            +
            	# """split words seperated by special characters"""
         | 
| 79 | 
            +
            	# print(col_val)
         | 
| 80 | 
            +
            	if col_val != '':
         | 
| 81 | 
            +
            		char_list = ['|', ',', '/', '.', ';', './', ',/', '/ ', ' /']
         | 
| 82 | 
            +
            		# res = ' '.join([ele for ele in char_list if(ele in col_val)])
         | 
| 83 | 
            +
            		res = [ele for ele in char_list if (ele in col_val)]
         | 
| 84 | 
            +
            		# print('printing string of found char',res)
         | 
| 85 | 
            +
            		colstring = str(col_val)
         | 
| 86 | 
            +
            		f_res = []
         | 
| 87 | 
            +
            		try:
         | 
| 88 | 
            +
            			while len(res) > 0:
         | 
| 89 | 
            +
            				res = res[-1]
         | 
| 90 | 
            +
            				f_res = colstring.split(''.join(res))
         | 
| 91 | 
            +
            				# print(f_res)
         | 
| 92 | 
            +
            				# return f_res
         | 
| 93 | 
            +
            				f_res = [x for x in f_res if x is not None]
         | 
| 94 | 
            +
            				return ', '.join(f_res)
         | 
| 95 | 
            +
            		except:
         | 
| 96 | 
            +
            			pass
         | 
| 97 | 
            +
            		else:
         | 
| 98 | 
            +
            			return col_val
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
            def map_entry_terms(myText):
         | 
| 102 | 
            +
            	obj = CaseInsensitiveDict(entry_dict)
         | 
| 103 | 
            +
            	pattern = re.compile(r'(?<!\w)(' + '|'.join(re.escape(key) for key in obj.keys()) + r')(?!\w)', flags=re.IGNORECASE)
         | 
| 104 | 
            +
            	text = pattern.sub(lambda x: obj[x.group()], myText)
         | 
| 105 | 
            +
            	# text = pattern.sub(lambda x: obj[x.group()], text)
         | 
| 106 | 
            +
            	return text.strip().split('/')
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
            +
            def remove_none(some_list):
         | 
| 110 | 
            +
            	some_list = [some_list] if isinstance(some_list, str) else some_list
         | 
| 111 | 
            +
            	if some_list is not None:
         | 
| 112 | 
            +
            		some_list = list(filter(lambda x: x != None, some_list))
         | 
| 113 | 
            +
            		return some_list
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            def retain_all_ta(some_list):
         | 
| 117 | 
            +
            	some_list = [some_list] if isinstance(some_list, str) else some_list
         | 
| 118 | 
            +
            	# some_list.split(',')
         | 
| 119 | 
            +
            	value = 'all_ta'
         | 
| 120 | 
            +
            	#   print(value)
         | 
| 121 | 
            +
            	if some_list is not None:
         | 
| 122 | 
            +
            		if value in some_list:
         | 
| 123 | 
            +
            			some_list = [value]
         | 
| 124 | 
            +
            			return some_list
         | 
| 125 | 
            +
            		else:
         | 
| 126 | 
            +
            			return some_list
         | 
| 127 | 
            +
             | 
| 128 | 
            +
             | 
| 129 | 
            +
            def unique_list(l):
         | 
| 130 | 
            +
            	l = map(str.strip, l)  # remove whitespace from list element
         | 
| 131 | 
            +
            	# print(l)
         | 
| 132 | 
            +
            	ulist = []
         | 
| 133 | 
            +
            	[ulist.append(x) for x in l if x not in ulist]
         | 
| 134 | 
            +
            	return ulist
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            def split_for_type_extract(my_list, char):
         | 
| 138 | 
            +
            	# print('entering the function:',my_list)
         | 
| 139 | 
            +
            	try:
         | 
| 140 | 
            +
            		my_list = [my_list] if isinstance(my_list, str) else my_list
         | 
| 141 | 
            +
            		if my_list is not None:
         | 
| 142 | 
            +
            			# print(my_list)
         | 
| 143 | 
            +
            			my_list = list(map(lambda x: x.split(char)[0], my_list))
         | 
| 144 | 
            +
            			# my_list = [x for x in my_list if x is not None]
         | 
| 145 | 
            +
            			return my_list
         | 
| 146 | 
            +
            	except:
         | 
| 147 | 
            +
            		pass
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            def special_ask(col_value):
         | 
| 151 | 
            +
            	col_value = col_value.lower()
         | 
| 152 | 
            +
            	if col_value == 'obesity':
         | 
| 153 | 
            +
            		ta_list = 'met'
         | 
| 154 | 
            +
            		return ta_list.split()
         | 
| 155 | 
            +
            	elif col_value == 'healthy subject':
         | 
| 156 | 
            +
            		ta_list = 'all_ta'
         | 
| 157 | 
            +
            		return ta_list.split()
         | 
| 158 | 
            +
            	elif col_value == 'healthy subjects':
         | 
| 159 | 
            +
            		ta_list = 'all_ta'
         | 
| 160 | 
            +
            		return ta_list.split()
         | 
| 161 | 
            +
            	elif col_value == 'healthy participants':
         | 
| 162 | 
            +
            		ta_list = 'all_ta'
         | 
| 163 | 
            +
            		return ta_list.split()
         | 
| 164 | 
            +
            	elif col_value == 'healthy participant':
         | 
| 165 | 
            +
            		ta_list = 'all_ta'
         | 
| 166 | 
            +
            		return ta_list.split()
         | 
| 167 | 
            +
            	elif col_value == 'inflammation':
         | 
| 168 | 
            +
            		ta_list = 'ai'
         | 
| 169 | 
            +
            		return ta_list.split()
         | 
| 170 | 
            +
            	else:
         | 
| 171 | 
            +
            		pass
         | 
| 172 | 
            +
             | 
| 173 | 
            +
             | 
| 174 | 
            +
            def remove_stopwords(query):
         | 
| 175 | 
            +
            	stopwords = ['acute-on-chronic', 'acute', 'chronic',
         | 
| 176 | 
            +
            	             'diseases of the', '-19', '- 19', '19', '.']
         | 
| 177 | 
            +
            	if query is not None:
         | 
| 178 | 
            +
            		querywords = query.split()
         | 
| 179 | 
            +
            		resultwords = [word for word in querywords if word.lower() not in stopwords]
         | 
| 180 | 
            +
            		result = ' '.join(resultwords)
         | 
| 181 | 
            +
            		return result
         | 
| 182 | 
            +
            	else:
         | 
| 183 | 
            +
            		''
         | 
| 184 | 
            +
             | 
| 185 | 
            +
             | 
| 186 | 
            +
            def gb_2_us(text, mydict):
         | 
| 187 | 
            +
            	try:
         | 
| 188 | 
            +
            		for us, gb in mydict.items():
         | 
| 189 | 
            +
            			text = text.replace(gb, us)
         | 
| 190 | 
            +
            			return text
         | 
| 191 | 
            +
            	except:
         | 
| 192 | 
            +
            		return ''
         | 
| 193 | 
            +
             | 
| 194 | 
            +
             | 
| 195 | 
            +
            def fix_text_with_dict(text, mydict):
         | 
| 196 | 
            +
            	text = ','.join([repl_dict.get(i, i) for i in text.split(', ')])
         | 
| 197 | 
            +
            	return text
         | 
| 198 | 
            +
             | 
| 199 | 
            +
             | 
| 200 | 
            +
            def replace_text(mytext):
         | 
| 201 | 
            +
            	cancer = ['cancer', 'neoplasm', 'carcinoma', 'lymphoma', 'adenoma', 'myoma', 'meningioma',
         | 
| 202 | 
            +
            	          'malignancy', 'tumor', 'malignancies', 'chemotherapy']
         | 
| 203 | 
            +
            	# fracture = ['fractures', 'fracture']
         | 
| 204 | 
            +
            	heart_failure = ['heart failure', 'cardiac']
         | 
| 205 | 
            +
            	ectomy = 'prostatectomy'
         | 
| 206 | 
            +
            	covid = 'covid'
         | 
| 207 | 
            +
            	transplant = 'transplant'
         | 
| 208 | 
            +
            	healthy = 'healthy'
         | 
| 209 | 
            +
            	park = 'parkinson'
         | 
| 210 | 
            +
            	allergy = ['allergy', 'allergic']
         | 
| 211 | 
            +
            	virus = 'virus'
         | 
| 212 | 
            +
            	cornea = ['cornea', 'eye', 'ocular', 'macular']
         | 
| 213 | 
            +
            	vaccine = 'vaccines'
         | 
| 214 | 
            +
            	ureter = 'ureter'
         | 
| 215 | 
            +
            	mutation = 'mutation'
         | 
| 216 | 
            +
            	stemcell = 'stem cells'
         | 
| 217 | 
            +
            	behavior = ['behavior', 'depressive', 'depression', 'anxiety', 'satisfaction', 'grief']
         | 
| 218 | 
            +
            	molar = ['molar', 'dental', 'maxillary']
         | 
| 219 | 
            +
            	diet = 'diet'
         | 
| 220 | 
            +
            	biopsy = 'biopsy'
         | 
| 221 | 
            +
            	physiology = 'physiology'
         | 
| 222 | 
            +
            	infection = ['infection', 'bacteremia', 'fungemia']
         | 
| 223 | 
            +
            	preg = ['pregnancy', 'pregnant', 'labor', 'birth']
         | 
| 224 | 
            +
            	imaging = ['x-ray', 'imaging', 'mri']
         | 
| 225 | 
            +
            	surgery = 'surgery'
         | 
| 226 | 
            +
            	angina = 'angina'
         | 
| 227 | 
            +
            	use_disorder = ['use disorder', 'obsessive', 'panic', 'posttraumatic stress',
         | 
| 228 | 
            +
            	                'post-traumatic stress', 'schizophrenia']
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            	if mytext:
         | 
| 231 | 
            +
            		try:
         | 
| 232 | 
            +
            			if any(text in mytext.lower() for text in cancer):
         | 
| 233 | 
            +
            				mytext = 'neoplasms'
         | 
| 234 | 
            +
            				return mytext
         | 
| 235 | 
            +
            			if any(text in mytext.lower() for text in heart_failure):
         | 
| 236 | 
            +
            				mytext = 'cardiovascular diseases'
         | 
| 237 | 
            +
            				return mytext
         | 
| 238 | 
            +
            			if covid in mytext.lower():
         | 
| 239 | 
            +
            				mytext = 'covid-19'
         | 
| 240 | 
            +
            				return mytext
         | 
| 241 | 
            +
            			if ectomy in mytext.lower():
         | 
| 242 | 
            +
            				mytext = 'urogenital surgical procedures'
         | 
| 243 | 
            +
            				return mytext
         | 
| 244 | 
            +
            			if transplant in mytext.lower():
         | 
| 245 | 
            +
            				mytext = 'body regions'
         | 
| 246 | 
            +
            				return mytext
         | 
| 247 | 
            +
            			if healthy in mytext.lower():
         | 
| 248 | 
            +
            				mytext = 'healthy volunteers'
         | 
| 249 | 
            +
            				return mytext
         | 
| 250 | 
            +
            			if any(text in mytext.lower() for text in allergy):
         | 
| 251 | 
            +
            				mytext = 'immune system diseases'
         | 
| 252 | 
            +
            				return mytext
         | 
| 253 | 
            +
            			if park in mytext.lower():
         | 
| 254 | 
            +
            				mytext = 'parkinson disease'
         | 
| 255 | 
            +
            				return mytext
         | 
| 256 | 
            +
            			if park in mytext.lower():
         | 
| 257 | 
            +
            				mytext = 'immune system diseases'
         | 
| 258 | 
            +
            				return mytext
         | 
| 259 | 
            +
            			if virus in mytext.lower():
         | 
| 260 | 
            +
            				mytext = 'viruses'
         | 
| 261 | 
            +
            				return mytext
         | 
| 262 | 
            +
            			if any(text in mytext.lower() for text in cornea):
         | 
| 263 | 
            +
            				mytext = 'eye diseases'
         | 
| 264 | 
            +
            				return mytext
         | 
| 265 | 
            +
            			if vaccine in mytext.lower():
         | 
| 266 | 
            +
            				mytext = 'vaccines'
         | 
| 267 | 
            +
            				return mytext
         | 
| 268 | 
            +
            			if ureter in mytext.lower():
         | 
| 269 | 
            +
            				mytext = 'ureter'
         | 
| 270 | 
            +
            				return mytext
         | 
| 271 | 
            +
            			if mutation in mytext.lower():
         | 
| 272 | 
            +
            				mytext = 'mutation'
         | 
| 273 | 
            +
            				return mytext
         | 
| 274 | 
            +
            			if stemcell in mytext.lower():
         | 
| 275 | 
            +
            				mytext = 'stem cells'
         | 
| 276 | 
            +
            				return mytext
         | 
| 277 | 
            +
            			if any(text in mytext.lower() for text in behavior):
         | 
| 278 | 
            +
            				mytext = 'behavior'
         | 
| 279 | 
            +
            				return mytext
         | 
| 280 | 
            +
            			if any(text in mytext.lower() for text in molar):
         | 
| 281 | 
            +
            				mytext = 'molar'
         | 
| 282 | 
            +
            				return mytext
         | 
| 283 | 
            +
            			if diet in mytext.lower():
         | 
| 284 | 
            +
            				mytext = 'diet'
         | 
| 285 | 
            +
            				return mytext
         | 
| 286 | 
            +
            			if biopsy in mytext.lower():
         | 
| 287 | 
            +
            				mytext = 'biopsy'
         | 
| 288 | 
            +
            				return mytext
         | 
| 289 | 
            +
            			if physiology in mytext.lower():
         | 
| 290 | 
            +
            				mytext = 'physiology'
         | 
| 291 | 
            +
            				return mytext
         | 
| 292 | 
            +
            			if any(text in mytext.lower() for text in infection):
         | 
| 293 | 
            +
            				mytext = 'infections'
         | 
| 294 | 
            +
            				return mytext
         | 
| 295 | 
            +
            			if any(text in mytext.lower() for text in preg):
         | 
| 296 | 
            +
            				mytext = 'reproductive and urinary physiological phenomena'
         | 
| 297 | 
            +
            				return mytext
         | 
| 298 | 
            +
            			if any(text in mytext.lower() for text in imaging):
         | 
| 299 | 
            +
            				mytext = 'diagnosis'
         | 
| 300 | 
            +
            				return mytext
         | 
| 301 | 
            +
            			if surgery in mytext.lower():
         | 
| 302 | 
            +
            				mytext = 'medicine'
         | 
| 303 | 
            +
            				return mytext
         | 
| 304 | 
            +
            			if angina in mytext.lower():
         | 
| 305 | 
            +
            				mytext = 'angina pectoris'
         | 
| 306 | 
            +
            				return mytext
         | 
| 307 | 
            +
            			if any(text in mytext.lower() for text in use_disorder):
         | 
| 308 | 
            +
            				mytext = 'mental disorders'
         | 
| 309 | 
            +
            				return mytext
         | 
| 310 | 
            +
            			else:
         | 
| 311 | 
            +
            				return mytext
         | 
| 312 | 
            +
            		except:
         | 
| 313 | 
            +
            			return ''
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            # For studies in CTgov 
         | 
| 317 | 
            +
            def is_nct(col_value):
         | 
| 318 | 
            +
            	# Returns mesh term list based on NCT ID
         | 
| 319 | 
            +
            	val = col_value[:3]
         | 
| 320 | 
            +
            	if val == 'NCT':
         | 
| 321 | 
            +
            		try:
         | 
| 322 | 
            +
            			if col_value in df_mesh_ct.values:
         | 
| 323 | 
            +
            				mesh_term_list = meshtrm_lst_xtract(col_value)
         | 
| 324 | 
            +
            				l2map = type_extract(mesh_term_list)
         | 
| 325 | 
            +
            				return l2map
         | 
| 326 | 
            +
            		except:
         | 
| 327 | 
            +
            			pass
         | 
| 328 | 
            +
            	else:
         | 
| 329 | 
            +
            		'Study Not in Database, Please enter condition or conditions treated'
         | 
| 330 | 
            +
            	return
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
            # For studies not in CTgov
         | 
| 334 | 
            +
            def is_not_nct(col_value):
         | 
| 335 | 
            +
            	# Returns mesh term list based on NCT ID
         | 
| 336 | 
            +
            	# Returns disease type l2 tag in Mesh dictionary
         | 
| 337 | 
            +
            	if col_value is not None:
         | 
| 338 | 
            +
            		mesh_term_list = col_value
         | 
| 339 | 
            +
            		l2map = type_extract(mesh_term_list)
         | 
| 340 | 
            +
            		return l2map
         | 
| 341 | 
            +
            	else:
         | 
| 342 | 
            +
            		None
         | 
| 343 | 
            +
            	return
         |