Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,22 @@ import torch.nn.functional as F
|
|
4 |
import hnswlib
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
|
|
|
|
7 |
|
8 |
seperator = "-HFSEP-"
|
9 |
base_name="intfloat/e5-large-v2"
|
10 |
device="cuda"
|
11 |
max_length=512
|
|
|
12 |
tokenizer = AutoTokenizer.from_pretrained(base_name)
|
13 |
model = AutoModel.from_pretrained(base_name).to(device)
|
14 |
|
|
|
|
|
|
|
15 |
def get_embeddings(input_texts):
|
|
|
16 |
batch_dict = tokenizer(
|
17 |
input_texts,
|
18 |
max_length=max_length,
|
@@ -52,16 +59,18 @@ def create_hnsw_index(embeddings_np, space='ip', ef_construction=100, M=16):
|
|
52 |
def gradio_function(query, paragraph_chunks, top_k):
|
53 |
paragraph_chunks = paragraph_chunks.split(seperator) # Split the comma-separated values into a list
|
54 |
paragraph_chunks = [item.strip() for item in paragraph_chunks] # Trim whitespace from each item
|
|
|
55 |
|
56 |
-
print("creating embeddings")
|
57 |
embeddings_np = get_embeddings([query]+paragraph_chunks)
|
58 |
query_embedding, chunks_embeddings = embeddings_np[0], embeddings_np[1:]
|
59 |
|
60 |
-
print("creating index")
|
61 |
search_index = create_hnsw_index(chunks_embeddings)
|
62 |
-
print("searching index")
|
63 |
labels, _ = search_index.knn_query(query_embedding, k=min(int(top_k), len(chunks_embeddings)))
|
64 |
-
|
|
|
65 |
|
66 |
interface = gr.Interface(
|
67 |
fn=gradio_function,
|
@@ -73,4 +82,4 @@ interface = gr.Interface(
|
|
73 |
outputs="text"
|
74 |
)
|
75 |
|
76 |
-
interface.launch()
|
|
|
4 |
import hnswlib
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
import json
|
8 |
+
import datetime
|
9 |
|
10 |
seperator = "-HFSEP-"
|
11 |
base_name="intfloat/e5-large-v2"
|
12 |
device="cuda"
|
13 |
max_length=512
|
14 |
+
max_batch_size = 500
|
15 |
tokenizer = AutoTokenizer.from_pretrained(base_name)
|
16 |
model = AutoModel.from_pretrained(base_name).to(device)
|
17 |
|
18 |
+
def current_timestamp():
|
19 |
+
return datetime.datetime.utcnow().timestamp()
|
20 |
+
|
21 |
def get_embeddings(input_texts):
|
22 |
+
input_texts = input_texts[:max_batch_size]
|
23 |
batch_dict = tokenizer(
|
24 |
input_texts,
|
25 |
max_length=max_length,
|
|
|
59 |
def gradio_function(query, paragraph_chunks, top_k):
|
60 |
paragraph_chunks = paragraph_chunks.split(seperator) # Split the comma-separated values into a list
|
61 |
paragraph_chunks = [item.strip() for item in paragraph_chunks] # Trim whitespace from each item
|
62 |
+
print("Len of batches", len(paragraph_chunks))
|
63 |
|
64 |
+
print("creating embeddings", current_timestamp())
|
65 |
embeddings_np = get_embeddings([query]+paragraph_chunks)
|
66 |
query_embedding, chunks_embeddings = embeddings_np[0], embeddings_np[1:]
|
67 |
|
68 |
+
print("creating index", current_timestamp())
|
69 |
search_index = create_hnsw_index(chunks_embeddings)
|
70 |
+
print("searching index", current_timestamp())
|
71 |
labels, _ = search_index.knn_query(query_embedding, k=min(int(top_k), len(chunks_embeddings)))
|
72 |
+
labels = labels[0].tolist()
|
73 |
+
return json.dumps(labels)
|
74 |
|
75 |
interface = gr.Interface(
|
76 |
fn=gradio_function,
|
|
|
82 |
outputs="text"
|
83 |
)
|
84 |
|
85 |
+
interface.launch()
|