import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch import spaces # Define quantization configuration quantization_config = BitsAndBytesConfig( load_in_4bit=True, # Specify 4-bit quantization bnb_4bit_use_double_quant=True, # Use double quantization for better efficiency bnb_4bit_quant_type="nf4", # Set the quantization type to NF4 bnb_4bit_compute_dtype=torch.float16 # Use float16 for computations ) # Load the tokenizer and quantized model from Hugging Face model_name = "llSourcell/medllama2_7b" tokenizer = AutoTokenizer.from_pretrained(model_name) # Load model with quantization model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=quantization_config, device_map="auto") model.eval() def format_history(msg: str, history: list[list[str, str]], system_prompt: str): chat_history = system_prompt for query, response in history: chat_history += f"\nUser: {query}\nAssistant: {response}" chat_history += f"\nUser: {msg}\nAssistant:" return chat_history @spaces.GPU(duration=30) def generate_response(msg: str, history: list[list[str, str]], system_prompt: str): chat_history = format_history(msg, history, system_prompt) # Tokenize the input prompt inputs = tokenizer(chat_history, return_tensors="pt").to("cuda") # Generate a response using the model outputs = model.generate(inputs["input_ids"], max_length=1024, pad_token_id=tokenizer.eos_token_id) # Decode the response back to a string response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True) # Yield the generated response yield response # Define the Gradio ChatInterface chatbot = gr.ChatInterface( generate_response, chatbot=gr.Chatbot( height="64vh" ), additional_inputs=[ gr.Textbox( "Behave as if you are a medical doctor providing answers for patients' clinical questions.", label="System Prompt" ) ], title="Medical QA Chat", description="Feel free to ask any question to Medllama2 Chatbot.", theme="soft", submit_btn="Send", retry_btn="Regenerate Response", undo_btn="Delete Previous", clear_btn="Clear Chat" ) # Following line is important to queue the messages chatbot.queue() # Enable share = True if you want to create a public link for people to use your application chatbot.launch()