Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
import torch
|
4 |
import spaces
|
5 |
|
|
|
|
|
|
|
|
|
6 |
# Define quantization configuration
|
7 |
quantization_config = BitsAndBytesConfig(
|
8 |
load_in_4bit=True, # Specify 4-bit quantization
|
@@ -14,6 +18,7 @@ quantization_config = BitsAndBytesConfig(
|
|
14 |
# Load the tokenizer and quantized model from Hugging Face
|
15 |
model_name = "llSourcell/medllama2_7b"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
17 |
|
18 |
# Load model with quantization
|
19 |
model = AutoModelForCausalLM.from_pretrained(model_name,
|
@@ -29,24 +34,49 @@ def format_history(msg: str, history: list[list[str, str]], system_prompt: str):
|
|
29 |
return chat_history
|
30 |
|
31 |
@spaces.GPU(duration=90)
|
32 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
chat_history = format_history(msg, history, system_prompt)
|
34 |
|
35 |
# Tokenize the input prompt
|
36 |
inputs = tokenizer(chat_history, return_tensors="pt").to("cuda")
|
|
|
37 |
|
38 |
# Generate a response using the model
|
39 |
-
outputs = model.generate(inputs["input_ids"], max_length=500, pad_token_id=tokenizer.eos_token_id)
|
40 |
|
41 |
# Decode the response back to a string
|
42 |
-
response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Yield the generated response
|
45 |
-
yield response
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Define the Gradio ChatInterface
|
48 |
chatbot = gr.ChatInterface(
|
49 |
-
|
50 |
chatbot=gr.Chatbot(
|
51 |
height="64vh"
|
52 |
),
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
3 |
import torch
|
4 |
import spaces
|
5 |
|
6 |
+
import os
|
7 |
+
from threading import Thread
|
8 |
+
from typing import Iterator
|
9 |
+
|
10 |
# Define quantization configuration
|
11 |
quantization_config = BitsAndBytesConfig(
|
12 |
load_in_4bit=True, # Specify 4-bit quantization
|
|
|
18 |
# Load the tokenizer and quantized model from Hugging Face
|
19 |
model_name = "llSourcell/medllama2_7b"
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
# Load model with quantization
|
24 |
model = AutoModelForCausalLM.from_pretrained(model_name,
|
|
|
34 |
return chat_history
|
35 |
|
36 |
@spaces.GPU(duration=90)
|
37 |
+
def generate(msg: str,
|
38 |
+
history: list[list[str, str]],
|
39 |
+
system_prompt: str,
|
40 |
+
max_new_tokens: int = 1024,
|
41 |
+
temperature: float = 0.6,
|
42 |
+
top_p: float = 0.9,
|
43 |
+
top_k: int = 50,
|
44 |
+
repetition_penalty: float = 1.2,) -> Iterator[str]:
|
45 |
chat_history = format_history(msg, history, system_prompt)
|
46 |
|
47 |
# Tokenize the input prompt
|
48 |
inputs = tokenizer(chat_history, return_tensors="pt").to("cuda")
|
49 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
50 |
|
51 |
# Generate a response using the model
|
52 |
+
# outputs = model.generate(inputs["input_ids"], max_length=500, pad_token_id=tokenizer.eos_token_id)
|
53 |
|
54 |
# Decode the response back to a string
|
55 |
+
# response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
|
56 |
+
generate_kwargs = dict(
|
57 |
+
{"input_ids": input_ids},
|
58 |
+
streamer=streamer,
|
59 |
+
max_new_tokens=max_new_tokens,
|
60 |
+
do_sample=True,
|
61 |
+
top_p=top_p,
|
62 |
+
top_k=top_k,
|
63 |
+
temperature=temperature,
|
64 |
+
num_beams=1,
|
65 |
+
repetition_penalty=repetition_penalty,
|
66 |
+
)
|
67 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
+
t.start()
|
69 |
|
70 |
# Yield the generated response
|
71 |
+
#yield response
|
72 |
+
outputs = []
|
73 |
+
for text in streamer:
|
74 |
+
outputs.append(text)
|
75 |
+
yield "".join(outputs)
|
76 |
|
77 |
# Define the Gradio ChatInterface
|
78 |
chatbot = gr.ChatInterface(
|
79 |
+
fn=generate,
|
80 |
chatbot=gr.Chatbot(
|
81 |
height="64vh"
|
82 |
),
|