miracFence commited on
Commit
d212956
·
verified ·
1 Parent(s): 2482874

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -59
app.py CHANGED
@@ -1,63 +1,65 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load the tokenizer and quantized model from Hugging Face
6
+ model_name = "llSourcell/medllama2_7b"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+
9
+ # Load model with quantization
10
+ model = AutoModelForCausalLM.from_pretrained(model_name,
11
+ load_in_4bit=True,
12
+ device_map="auto",
13
+ quantization_config={
14
+ 'bits': 4, # Quantize to 4-bit
15
+ 'group_size': 128
16
+ })
17
+
18
+ def format_history(msg: str, history: list[list[str, str]], system_prompt: str):
19
+ chat_history = system_prompt
20
+ for query, response in history:
21
+ chat_history += f"\nUser: {query}\nAssistant: {response}"
22
+ chat_history += f"\nUser: {msg}\nAssistant:"
23
+ return chat_history
24
+
25
+ def generate_response(msg: str, history: list[list[str, str]], system_prompt: str):
26
+ chat_history = format_history(msg, history, system_prompt)
27
+
28
+ # Tokenize the input prompt
29
+ inputs = tokenizer(chat_history, return_tensors="pt").to("cuda")
30
+
31
+ # Generate a response using the model
32
+ outputs = model.generate(inputs["input_ids"], max_length=500, pad_token_id=tokenizer.eos_token_id)
33
+
34
+ # Decode the response back to a string
35
+ response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
36
+
37
+ # Yield the generated response
38
+ yield response
39
+
40
+ # Define the Gradio ChatInterface
41
+ chatbot = gr.ChatInterface(
42
+ generate_response,
43
+ chatbot=gr.Chatbot(
44
+ height="64vh"
45
+ ),
46
+ additional_inputs=[
47
+ gr.Textbox(
48
+ "Behave as if you are a medical doctor providing answers for patients' clinical questions.",
49
+ label="System Prompt"
50
+ )
51
+ ],
52
+ title="Medical QA Chat",
53
+ description="Feel free to ask any question to Medllama2 Chatbot.",
54
+ theme="soft",
55
+ submit_btn="Send",
56
+ retry_btn="Regenerate Response",
57
+ undo_btn="Delete Previous",
58
+ clear_btn="Clear Chat"
59
  )
60
 
61
+ # Following line is important to queue the messages
62
+ chatbot.queue()
63
 
64
+ # Enable share = True if you want to create a public link for people to use your application
65
+ chatbot.launch()