Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,33 +26,33 @@ model = AutoModelForCausalLM.from_pretrained(model_name,
|
|
26 |
device_map="auto")
|
27 |
model.eval()
|
28 |
|
29 |
-
def format_history(msg: str, history: list[list[str, str]], system_prompt: str):
|
30 |
-
chat_history = system_prompt
|
31 |
-
for query, response in history:
|
32 |
-
chat_history += f"\nUser: {query}\nAssistant: {response}"
|
33 |
-
chat_history += f"\nUser: {msg}\nAssistant:"
|
34 |
-
return chat_history
|
35 |
-
|
36 |
@spaces.GPU(duration=90)
|
37 |
-
def generate(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
# response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
|
56 |
generate_kwargs = dict(
|
57 |
{"input_ids": input_ids},
|
58 |
streamer=streamer,
|
@@ -66,9 +66,7 @@ def generate(msg: str,
|
|
66 |
)
|
67 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
t.start()
|
69 |
-
|
70 |
-
# Yield the generated response
|
71 |
-
#yield response
|
72 |
outputs = []
|
73 |
for text in streamer:
|
74 |
outputs.append(text)
|
|
|
26 |
device_map="auto")
|
27 |
model.eval()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@spaces.GPU(duration=90)
|
30 |
+
def generate(
|
31 |
+
message: str,
|
32 |
+
chat_history: list[tuple[str, str]],
|
33 |
+
max_new_tokens: int = 1024,
|
34 |
+
temperature: float = 0.6,
|
35 |
+
top_p: float = 0.9,
|
36 |
+
top_k: int = 50,
|
37 |
+
repetition_penalty: float = 1.2,
|
38 |
+
) -> Iterator[str]:
|
39 |
+
conversation = []
|
40 |
+
for user, assistant in chat_history:
|
41 |
+
conversation.extend(
|
42 |
+
[
|
43 |
+
{"role": "user", "content": user},
|
44 |
+
{"role": "assistant", "content": assistant},
|
45 |
+
]
|
46 |
+
)
|
47 |
+
conversation.append({"role": "user", "content": message})
|
48 |
+
|
49 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
50 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
51 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
52 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
53 |
+
input_ids = input_ids.to(model.device)
|
54 |
|
55 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
56 |
generate_kwargs = dict(
|
57 |
{"input_ids": input_ids},
|
58 |
streamer=streamer,
|
|
|
66 |
)
|
67 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
68 |
t.start()
|
69 |
+
|
|
|
|
|
70 |
outputs = []
|
71 |
for text in streamer:
|
72 |
outputs.append(text)
|