miracFence's picture
Update app.py
fd4a241 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import spaces
# Define quantization configuration
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # Specify 4-bit quantization
bnb_4bit_use_double_quant=True, # Use double quantization for better efficiency
bnb_4bit_quant_type="nf4", # Set the quantization type to NF4
bnb_4bit_compute_dtype=torch.float16 # Use float16 for computations
)
# Load the tokenizer and quantized model from Hugging Face
model_name = "llSourcell/medllama2_7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model with quantization
model = AutoModelForCausalLM.from_pretrained(model_name,
quantization_config=quantization_config,
device_map="auto")
model.eval()
def format_history(msg: str, history: list[list[str, str]], system_prompt: str):
chat_history = system_prompt
for query, response in history:
chat_history += f"\nUser: {query}\nAssistant: {response}"
chat_history += f"\nUser: {msg}\nAssistant:"
return chat_history
@spaces.GPU(duration=30)
def generate_response(msg: str, history: list[list[str, str]], system_prompt: str):
chat_history = format_history(msg, history, system_prompt)
# Tokenize the input prompt
inputs = tokenizer(chat_history, return_tensors="pt").to("cuda")
# Generate a response using the model
outputs = model.generate(inputs["input_ids"], max_length=1024, pad_token_id=tokenizer.eos_token_id)
# Decode the response back to a string
response = tokenizer.decode(outputs[:, inputs["input_ids"].shape[-1]:][0], skip_special_tokens=True)
# Yield the generated response
yield response
# Define the Gradio ChatInterface
chatbot = gr.ChatInterface(
generate_response,
chatbot=gr.Chatbot(
height="64vh"
),
additional_inputs=[
gr.Textbox(
"Behave as if you are a medical doctor providing answers for patients' clinical questions.",
label="System Prompt"
)
],
title="Medical QA Chat",
description="Feel free to ask any question to Medllama2 Chatbot.",
theme="soft",
submit_btn="Send",
retry_btn="Regenerate Response",
undo_btn="Delete Previous",
clear_btn="Clear Chat"
)
# Following line is important to queue the messages
chatbot.queue()
# Enable share = True if you want to create a public link for people to use your application
chatbot.launch()