Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from peft import PeftModel
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
model_name = "rinna/japanese-gpt-neox-3.6b"
|
7 |
+
peft_name = "minoD/GOMESS"
|
8 |
+
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
device_map="cpu",
|
12 |
+
)
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
15 |
+
|
16 |
+
model = PeftModel.from_pretrained(
|
17 |
+
model,
|
18 |
+
peft_name,
|
19 |
+
device_map="cpu",
|
20 |
+
)
|
21 |
+
|
22 |
+
# プロンプトテンプレートの準備にカテゴリを追加
|
23 |
+
def generate_prompt(data_point, category=None):
|
24 |
+
category_part = f"### カテゴリ:\n{category}\n\n" if category else ""
|
25 |
+
result = f"{category_part}### 指示:\n{data_point['instruction']}\n\n### 入力:\n{data_point['input']}\n\n### 回答:\n" if data_point["input"] else f"{category_part}### 指示:\n{data_point['instruction']}\n\n### 回答:\n"
|
26 |
+
result = result.replace('\n', '<NL>')
|
27 |
+
return result
|
28 |
+
|
29 |
+
def generate(instruction, input=None, category=None, maxTokens=256):
|
30 |
+
# 推論
|
31 |
+
prompt = generate_prompt({'instruction':instruction, 'input':input}, category)
|
32 |
+
input_ids = tokenizer(prompt,
|
33 |
+
return_tensors="pt",
|
34 |
+
truncation=True,
|
35 |
+
add_special_tokens=False).input_ids
|
36 |
+
outputs = model.generate(
|
37 |
+
input_ids=input_ids,
|
38 |
+
max_new_tokens=maxTokens,
|
39 |
+
do_sample=True,
|
40 |
+
temperature=0.7,
|
41 |
+
top_p=0.75,
|
42 |
+
top_k=40,
|
43 |
+
no_repeat_ngram_size=2,
|
44 |
+
)
|
45 |
+
outputs = outputs[0].tolist()
|
46 |
+
|
47 |
+
# EOSトークンにヒットしたらデコード完了
|
48 |
+
if tokenizer.eos_token_id in outputs:
|
49 |
+
eos_index = outputs.index(tokenizer.eos_token_id)
|
50 |
+
decoded = tokenizer.decode(outputs[:eos_index])
|
51 |
+
|
52 |
+
# レスポンス内容のみ抽出
|
53 |
+
sentinel = "### 回答:"
|
54 |
+
sentinelLoc = decoded.find(sentinel)
|
55 |
+
if sentinelLoc >= 0:
|
56 |
+
result = decoded[sentinelLoc+len(sentinel):]
|
57 |
+
return result.replace("<NL>", "\n") # <NL>→改行
|
58 |
+
else:
|
59 |
+
return 'Warning: Expected prompt template to be emitted. Ignoring output.'
|
60 |
+
else:
|
61 |
+
return 'Warning: no <eos> detected ignoring output'
|
62 |
+
|
63 |
+
# 既存のgenerate関数を使用しますが、print文を削除し、結果を返すように変更します。
|
64 |
+
import gradio as gr
|
65 |
+
|
66 |
+
# generate関数をGradio用に調整します。入力とカテゴリは固定されます。
|
67 |
+
def generate_for_gradio(instruction):
|
68 |
+
return generate(instruction, category="ES2Q", maxTokens=200)
|
69 |
+
|
70 |
+
# Gradioインターフェースを定義します。
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=generate_for_gradio,
|
73 |
+
inputs=[
|
74 |
+
gr.Textbox(lines=10, placeholder="ESの回答を入力してください")
|
75 |
+
],
|
76 |
+
outputs="text",
|
77 |
+
title="ESから質問を生成テスト",
|
78 |
+
description="エントリーシートから面接官が言いそうな質問を生成します。(精度:悪)"
|
79 |
+
)
|
80 |
+
|
81 |
+
iface.launch()
|