Updates
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
# Try last 2 approaches, app was not rebuilding properly
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
from datasets import load_dataset
|
| 5 |
import numpy as np
|
|
@@ -28,15 +26,6 @@ def batch_iterable(iterable, batch_size):
|
|
| 28 |
for i in range(0, len(iterable), batch_size):
|
| 29 |
yield iterable[i:i + batch_size]
|
| 30 |
|
| 31 |
-
def compute_embeddings_with_progress(texts, batch_size, progress, desc="Computing embeddings"):
|
| 32 |
-
embeddings = []
|
| 33 |
-
total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 34 |
-
for batch_texts in progress.tqdm(batch_iterable(texts, batch_size), desc=desc, total=total_batches):
|
| 35 |
-
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 36 |
-
embeddings.append(batch_embeddings)
|
| 37 |
-
embedding_matrix = np.concatenate(embeddings, axis=0)
|
| 38 |
-
return embedding_matrix
|
| 39 |
-
|
| 40 |
def display_word_differences(x: str, y: str) -> str:
|
| 41 |
diff = ndiff(x.split(), y.split())
|
| 42 |
return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
|
@@ -76,7 +65,17 @@ def perform_deduplication(
|
|
| 76 |
# Compute embeddings
|
| 77 |
status = "Computing embeddings for Dataset 1..."
|
| 78 |
yield status, ""
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Deduplicate
|
| 82 |
status = "Deduplicating embeddings..."
|
|
@@ -143,12 +142,31 @@ def perform_deduplication(
|
|
| 143 |
# Compute embeddings for Dataset 1
|
| 144 |
status = "Computing embeddings for Dataset 1..."
|
| 145 |
yield status, ""
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# Compute embeddings for Dataset 2
|
| 149 |
status = "Computing embeddings for Dataset 2..."
|
| 150 |
yield status, ""
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
# Deduplicate across datasets
|
| 154 |
status = "Deduplicating embeddings across datasets..."
|
|
@@ -284,7 +302,7 @@ with gr.Blocks() as demo:
|
|
| 284 |
label="Similarity Threshold"
|
| 285 |
)
|
| 286 |
|
| 287 |
-
compute_button = gr.Button("
|
| 288 |
|
| 289 |
status_output = gr.Markdown()
|
| 290 |
result_output = gr.Markdown()
|
|
@@ -318,1825 +336,3 @@ with gr.Blocks() as demo:
|
|
| 318 |
)
|
| 319 |
|
| 320 |
demo.launch()
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
# import gradio as gr
|
| 324 |
-
# from datasets import load_dataset
|
| 325 |
-
# import numpy as np
|
| 326 |
-
# from model2vec import StaticModel
|
| 327 |
-
# from reach import Reach
|
| 328 |
-
# from difflib import ndiff
|
| 329 |
-
# import tqdm
|
| 330 |
-
|
| 331 |
-
# # Load the model at startup
|
| 332 |
-
# model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 333 |
-
|
| 334 |
-
# # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 335 |
-
# default_dataset1_name = "sst2"
|
| 336 |
-
# default_dataset1_split = "train"
|
| 337 |
-
# default_dataset2_name = "sst2"
|
| 338 |
-
# default_dataset2_split = "validation"
|
| 339 |
-
# default_text_column = "sentence"
|
| 340 |
-
# default_threshold = 0.9
|
| 341 |
-
|
| 342 |
-
# # Load the default datasets at startup
|
| 343 |
-
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 344 |
-
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 345 |
-
|
| 346 |
-
# def batch_iterable(iterable, batch_size):
|
| 347 |
-
# """Helper function to create batches from an iterable."""
|
| 348 |
-
# for i in range(0, len(iterable), batch_size):
|
| 349 |
-
# yield iterable[i:i + batch_size]
|
| 350 |
-
|
| 351 |
-
# def display_word_differences(x: str, y: str) -> str:
|
| 352 |
-
# diff = ndiff(x.split(), y.split())
|
| 353 |
-
# return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 354 |
-
|
| 355 |
-
# def perform_deduplication(
|
| 356 |
-
# deduplication_type,
|
| 357 |
-
# dataset1_name,
|
| 358 |
-
# dataset1_split,
|
| 359 |
-
# dataset1_text_column,
|
| 360 |
-
# dataset2_name="",
|
| 361 |
-
# dataset2_split="",
|
| 362 |
-
# dataset2_text_column="",
|
| 363 |
-
# threshold=default_threshold,
|
| 364 |
-
# progress=gr.Progress(track_tqdm=True)
|
| 365 |
-
# ):
|
| 366 |
-
# try:
|
| 367 |
-
# # Convert threshold to float
|
| 368 |
-
# threshold = float(threshold)
|
| 369 |
-
|
| 370 |
-
# # Initialize status message
|
| 371 |
-
# status = ""
|
| 372 |
-
|
| 373 |
-
# if deduplication_type == "Single dataset":
|
| 374 |
-
# # Load Dataset 1
|
| 375 |
-
# status = "Loading Dataset 1..."
|
| 376 |
-
# yield status, ""
|
| 377 |
-
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 378 |
-
# ds = ds_default1
|
| 379 |
-
# else:
|
| 380 |
-
# ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 381 |
-
|
| 382 |
-
# # Extract texts
|
| 383 |
-
# status = "Extracting texts from Dataset 1..."
|
| 384 |
-
# yield status, ""
|
| 385 |
-
# texts = [example[dataset1_text_column] for example in ds]
|
| 386 |
-
|
| 387 |
-
# # Compute embeddings
|
| 388 |
-
# status = "Computing embeddings for Dataset 1..."
|
| 389 |
-
# yield status, ""
|
| 390 |
-
# embeddings = []
|
| 391 |
-
# batch_size = 64
|
| 392 |
-
# total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 393 |
-
# for batch_texts in progress.tqdm(batch_iterable(texts, batch_size), desc="Computing embeddings", total=total_batches):
|
| 394 |
-
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 395 |
-
# embeddings.append(batch_embeddings)
|
| 396 |
-
# embedding_matrix = np.concatenate(embeddings, axis=0)
|
| 397 |
-
|
| 398 |
-
# # Deduplicate
|
| 399 |
-
# status = "Deduplicating embeddings..."
|
| 400 |
-
# yield status, ""
|
| 401 |
-
# deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 402 |
-
# embedding_matrix, threshold, progress=progress
|
| 403 |
-
# )
|
| 404 |
-
|
| 405 |
-
# # Prepare the results
|
| 406 |
-
# num_duplicates = len(duplicate_to_original_mapping)
|
| 407 |
-
# num_total = len(texts)
|
| 408 |
-
# num_deduplicated = len(deduplicated_indices)
|
| 409 |
-
|
| 410 |
-
# result_text = f"**Total documents:** {num_total}\n"
|
| 411 |
-
# result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 412 |
-
# result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 413 |
-
|
| 414 |
-
# # Show deduplicated examples
|
| 415 |
-
# if num_duplicates > 0:
|
| 416 |
-
# result_text += "**Examples of duplicates found:**\n\n"
|
| 417 |
-
# num_examples = min(5, num_duplicates)
|
| 418 |
-
# for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 419 |
-
# original_text = texts[original_idx]
|
| 420 |
-
# duplicate_text = texts[duplicate_idx]
|
| 421 |
-
# differences = display_word_differences(original_text, duplicate_text)
|
| 422 |
-
# result_text += f"**Original text:**\n{original_text}\n\n"
|
| 423 |
-
# result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 424 |
-
# result_text += f"**Differences:**\n{differences}\n"
|
| 425 |
-
# result_text += "-" * 50 + "\n\n"
|
| 426 |
-
# else:
|
| 427 |
-
# result_text += "No duplicates found."
|
| 428 |
-
|
| 429 |
-
# # Final status
|
| 430 |
-
# status = "Deduplication completed."
|
| 431 |
-
# yield status, result_text
|
| 432 |
-
|
| 433 |
-
# elif deduplication_type == "Cross-dataset":
|
| 434 |
-
# # Load Dataset 1
|
| 435 |
-
# status = "Loading Dataset 1..."
|
| 436 |
-
# yield status, ""
|
| 437 |
-
# if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 438 |
-
# ds1 = ds_default1
|
| 439 |
-
# else:
|
| 440 |
-
# ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 441 |
-
|
| 442 |
-
# # Load Dataset 2
|
| 443 |
-
# status = "Loading Dataset 2..."
|
| 444 |
-
# yield status, ""
|
| 445 |
-
# if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 446 |
-
# ds2 = ds_default2
|
| 447 |
-
# else:
|
| 448 |
-
# ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 449 |
-
|
| 450 |
-
# # Extract texts from Dataset 1
|
| 451 |
-
# status = "Extracting texts from Dataset 1..."
|
| 452 |
-
# yield status, ""
|
| 453 |
-
# texts1 = [example[dataset1_text_column] for example in ds1]
|
| 454 |
-
|
| 455 |
-
# # Extract texts from Dataset 2
|
| 456 |
-
# status = "Extracting texts from Dataset 2..."
|
| 457 |
-
# yield status, ""
|
| 458 |
-
# texts2 = [example[dataset2_text_column] for example in ds2]
|
| 459 |
-
|
| 460 |
-
# # Compute embeddings for Dataset 1
|
| 461 |
-
# status = "Computing embeddings for Dataset 1..."
|
| 462 |
-
# yield status, ""
|
| 463 |
-
# embeddings1 = []
|
| 464 |
-
# batch_size = 64
|
| 465 |
-
# total_batches1 = (len(texts1) + batch_size - 1) // batch_size
|
| 466 |
-
# for batch_texts in progress.tqdm(batch_iterable(texts1, batch_size), desc="Computing embeddings for Dataset 1", total=total_batches1):
|
| 467 |
-
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 468 |
-
# embeddings1.append(batch_embeddings)
|
| 469 |
-
# embedding_matrix1 = np.concatenate(embeddings1, axis=0)
|
| 470 |
-
|
| 471 |
-
# # Compute embeddings for Dataset 2
|
| 472 |
-
# status = "Computing embeddings for Dataset 2..."
|
| 473 |
-
# yield status, ""
|
| 474 |
-
# embeddings2 = []
|
| 475 |
-
# total_batches2 = (len(texts2) + batch_size - 1) // batch_size
|
| 476 |
-
# for batch_texts in progress.tqdm(batch_iterable(texts2, batch_size), desc="Computing embeddings for Dataset 2", total=total_batches2):
|
| 477 |
-
# batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 478 |
-
# embeddings2.append(batch_embeddings)
|
| 479 |
-
# embedding_matrix2 = np.concatenate(embeddings2, axis=0)
|
| 480 |
-
|
| 481 |
-
# # Deduplicate across datasets
|
| 482 |
-
# status = "Deduplicating embeddings across datasets..."
|
| 483 |
-
# yield status, ""
|
| 484 |
-
# duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 485 |
-
# embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 486 |
-
# )
|
| 487 |
-
|
| 488 |
-
# num_duplicates = len(duplicate_indices_in_ds2)
|
| 489 |
-
# num_total_ds2 = len(texts2)
|
| 490 |
-
# num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 491 |
-
|
| 492 |
-
# result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 493 |
-
# result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 494 |
-
# result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 495 |
-
|
| 496 |
-
# # Show deduplicated examples
|
| 497 |
-
# if num_duplicates > 0:
|
| 498 |
-
# result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 499 |
-
# num_examples = min(5, num_duplicates)
|
| 500 |
-
# for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 501 |
-
# original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 502 |
-
# original_text = texts1[original_idx]
|
| 503 |
-
# duplicate_text = texts2[duplicate_idx]
|
| 504 |
-
# differences = display_word_differences(original_text, duplicate_text)
|
| 505 |
-
# result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 506 |
-
# result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 507 |
-
# result_text += f"**Differences:**\n{differences}\n"
|
| 508 |
-
# result_text += "-" * 50 + "\n\n"
|
| 509 |
-
# else:
|
| 510 |
-
# result_text += "No duplicates found."
|
| 511 |
-
|
| 512 |
-
# # Final status
|
| 513 |
-
# status = "Deduplication completed."
|
| 514 |
-
# yield status, result_text
|
| 515 |
-
|
| 516 |
-
# except Exception as e:
|
| 517 |
-
# yield f"An error occurred: {e}", ""
|
| 518 |
-
# raise e
|
| 519 |
-
|
| 520 |
-
# def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 521 |
-
# """
|
| 522 |
-
# Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 523 |
-
# """
|
| 524 |
-
# # Building the index
|
| 525 |
-
# progress(0, desc="Building search index...")
|
| 526 |
-
# reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 527 |
-
|
| 528 |
-
# deduplicated_indices = set(range(len(embedding_matrix)))
|
| 529 |
-
# duplicate_to_original_mapping = {}
|
| 530 |
-
|
| 531 |
-
# # Finding nearest neighbors
|
| 532 |
-
# progress(0, desc="Finding nearest neighbors...")
|
| 533 |
-
# results = reach.nearest_neighbor_threshold(
|
| 534 |
-
# embedding_matrix,
|
| 535 |
-
# threshold=threshold,
|
| 536 |
-
# batch_size=batch_size,
|
| 537 |
-
# show_progressbar=False # Disable internal progress bar
|
| 538 |
-
# )
|
| 539 |
-
|
| 540 |
-
# # Processing duplicates with a progress bar
|
| 541 |
-
# total_items = len(embedding_matrix)
|
| 542 |
-
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 543 |
-
# if i not in deduplicated_indices:
|
| 544 |
-
# continue
|
| 545 |
-
|
| 546 |
-
# similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 547 |
-
|
| 548 |
-
# for sim_idx in similar_indices:
|
| 549 |
-
# if sim_idx in deduplicated_indices:
|
| 550 |
-
# deduplicated_indices.remove(sim_idx)
|
| 551 |
-
# duplicate_to_original_mapping[sim_idx] = i
|
| 552 |
-
|
| 553 |
-
# return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 554 |
-
|
| 555 |
-
# def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 556 |
-
# """
|
| 557 |
-
# Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 558 |
-
# """
|
| 559 |
-
# # Building the index from Dataset 1
|
| 560 |
-
# progress(0, desc="Building search index from Dataset 1...")
|
| 561 |
-
# reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 562 |
-
|
| 563 |
-
# duplicate_indices_in_test = []
|
| 564 |
-
# duplicate_to_original_mapping = {}
|
| 565 |
-
|
| 566 |
-
# # Finding nearest neighbors between datasets
|
| 567 |
-
# progress(0, desc="Finding nearest neighbors between datasets...")
|
| 568 |
-
# results = reach.nearest_neighbor_threshold(
|
| 569 |
-
# embedding_matrix_2,
|
| 570 |
-
# threshold=threshold,
|
| 571 |
-
# batch_size=batch_size,
|
| 572 |
-
# show_progressbar=False # Disable internal progress bar
|
| 573 |
-
# )
|
| 574 |
-
|
| 575 |
-
# total_items = len(embedding_matrix_2)
|
| 576 |
-
# # Processing duplicates with a progress bar
|
| 577 |
-
# for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 578 |
-
# similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 579 |
-
|
| 580 |
-
# if similar_indices:
|
| 581 |
-
# duplicate_indices_in_test.append(i)
|
| 582 |
-
# duplicate_to_original_mapping[i] = similar_indices[0]
|
| 583 |
-
|
| 584 |
-
# return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 585 |
-
|
| 586 |
-
# with gr.Blocks() as demo:
|
| 587 |
-
# gr.Markdown("# Semantic Deduplication")
|
| 588 |
-
|
| 589 |
-
# deduplication_type = gr.Radio(
|
| 590 |
-
# choices=["Single dataset", "Cross-dataset"],
|
| 591 |
-
# label="Deduplication Type",
|
| 592 |
-
# value="Single dataset"
|
| 593 |
-
# )
|
| 594 |
-
|
| 595 |
-
# with gr.Row():
|
| 596 |
-
# dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 597 |
-
# dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 598 |
-
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 599 |
-
|
| 600 |
-
# dataset2_inputs = gr.Column(visible=False)
|
| 601 |
-
# with dataset2_inputs:
|
| 602 |
-
# gr.Markdown("### Dataset 2")
|
| 603 |
-
# with gr.Row():
|
| 604 |
-
# dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 605 |
-
# dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 606 |
-
# dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 607 |
-
|
| 608 |
-
# threshold = gr.Slider(
|
| 609 |
-
# minimum=0.0,
|
| 610 |
-
# maximum=1.0,
|
| 611 |
-
# value=default_threshold,
|
| 612 |
-
# label="Similarity Threshold"
|
| 613 |
-
# )
|
| 614 |
-
|
| 615 |
-
# compute_button = gr.Button("Compute")
|
| 616 |
-
|
| 617 |
-
# status_output = gr.Markdown()
|
| 618 |
-
# result_output = gr.Markdown()
|
| 619 |
-
|
| 620 |
-
# # Function to update the visibility of dataset2_inputs
|
| 621 |
-
# def update_visibility(deduplication_type_value):
|
| 622 |
-
# if deduplication_type_value == "Cross-dataset":
|
| 623 |
-
# return gr.update(visible=True)
|
| 624 |
-
# else:
|
| 625 |
-
# return gr.update(visible=False)
|
| 626 |
-
|
| 627 |
-
# deduplication_type.change(
|
| 628 |
-
# update_visibility,
|
| 629 |
-
# inputs=deduplication_type,
|
| 630 |
-
# outputs=dataset2_inputs
|
| 631 |
-
# )
|
| 632 |
-
|
| 633 |
-
# compute_button.click(
|
| 634 |
-
# fn=perform_deduplication,
|
| 635 |
-
# inputs=[
|
| 636 |
-
# deduplication_type,
|
| 637 |
-
# dataset1_name,
|
| 638 |
-
# dataset1_split,
|
| 639 |
-
# dataset1_text_column,
|
| 640 |
-
# dataset2_name,
|
| 641 |
-
# dataset2_split,
|
| 642 |
-
# dataset2_text_column,
|
| 643 |
-
# threshold
|
| 644 |
-
# ],
|
| 645 |
-
# outputs=[status_output, result_output]
|
| 646 |
-
# )
|
| 647 |
-
|
| 648 |
-
# demo.launch()
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
# # import gradio as gr
|
| 653 |
-
# # from datasets import load_dataset
|
| 654 |
-
# # import numpy as np
|
| 655 |
-
# # from model2vec import StaticModel
|
| 656 |
-
# # from reach import Reach
|
| 657 |
-
# # from difflib import ndiff
|
| 658 |
-
# # import tqdm
|
| 659 |
-
|
| 660 |
-
# # # Load the model at startup
|
| 661 |
-
# # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 662 |
-
|
| 663 |
-
# # # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 664 |
-
# # default_dataset1_name = "sst2"
|
| 665 |
-
# # default_dataset1_split = "train"
|
| 666 |
-
# # default_dataset2_name = "sst2"
|
| 667 |
-
# # default_dataset2_split = "validation"
|
| 668 |
-
# # default_text_column = "sentence"
|
| 669 |
-
# # default_threshold = 0.9
|
| 670 |
-
|
| 671 |
-
# # # Load the default datasets at startup
|
| 672 |
-
# # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 673 |
-
# # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 674 |
-
|
| 675 |
-
# # def batch_iterable(iterable, batch_size):
|
| 676 |
-
# # """Helper function to create batches from an iterable."""
|
| 677 |
-
# # for i in range(0, len(iterable), batch_size):
|
| 678 |
-
# # yield iterable[i:i + batch_size]
|
| 679 |
-
|
| 680 |
-
# # def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
|
| 681 |
-
# # embeddings = []
|
| 682 |
-
# # for batch in progress.tqdm(batch_iterable(texts, batch_size), total=(len(texts) + batch_size - 1) // batch_size, desc=desc):
|
| 683 |
-
# # batch_embeddings = model.encode(batch, show_progressbar=False)
|
| 684 |
-
# # embeddings.append(batch_embeddings)
|
| 685 |
-
# # return np.concatenate(embeddings, axis=0)
|
| 686 |
-
|
| 687 |
-
# # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 688 |
-
# # """
|
| 689 |
-
# # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 690 |
-
# # """
|
| 691 |
-
# # # Building the index
|
| 692 |
-
# # progress(0, desc="Building search index...")
|
| 693 |
-
# # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 694 |
-
|
| 695 |
-
# # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 696 |
-
# # duplicate_to_original_mapping = {}
|
| 697 |
-
|
| 698 |
-
# # # Finding nearest neighbors
|
| 699 |
-
# # progress(0, desc="Finding nearest neighbors...")
|
| 700 |
-
# # results = reach.nearest_neighbor_threshold(
|
| 701 |
-
# # embedding_matrix,
|
| 702 |
-
# # threshold=threshold,
|
| 703 |
-
# # batch_size=batch_size,
|
| 704 |
-
# # show_progressbar=False # Disable internal progress bar
|
| 705 |
-
# # )
|
| 706 |
-
|
| 707 |
-
# # # Processing duplicates with a progress bar
|
| 708 |
-
# # total_items = len(embedding_matrix)
|
| 709 |
-
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 710 |
-
# # if i not in deduplicated_indices:
|
| 711 |
-
# # continue
|
| 712 |
-
|
| 713 |
-
# # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 714 |
-
|
| 715 |
-
# # for sim_idx in similar_indices:
|
| 716 |
-
# # if sim_idx in deduplicated_indices:
|
| 717 |
-
# # deduplicated_indices.remove(sim_idx)
|
| 718 |
-
# # duplicate_to_original_mapping[sim_idx] = i
|
| 719 |
-
|
| 720 |
-
# # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 721 |
-
|
| 722 |
-
# # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 723 |
-
# # """
|
| 724 |
-
# # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 725 |
-
# # """
|
| 726 |
-
# # # Building the index from Dataset 1
|
| 727 |
-
# # progress(0, desc="Building search index from Dataset 1...")
|
| 728 |
-
# # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 729 |
-
|
| 730 |
-
# # duplicate_indices_in_test = []
|
| 731 |
-
# # duplicate_to_original_mapping = {}
|
| 732 |
-
|
| 733 |
-
# # # Finding nearest neighbors between datasets
|
| 734 |
-
# # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 735 |
-
# # results = reach.nearest_neighbor_threshold(
|
| 736 |
-
# # embedding_matrix_2,
|
| 737 |
-
# # threshold=threshold,
|
| 738 |
-
# # batch_size=batch_size,
|
| 739 |
-
# # show_progressbar=False # Disable internal progress bar
|
| 740 |
-
# # )
|
| 741 |
-
|
| 742 |
-
# # total_items = len(embedding_matrix_2)
|
| 743 |
-
# # # Processing duplicates with a progress bar
|
| 744 |
-
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 745 |
-
# # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 746 |
-
|
| 747 |
-
# # if similar_indices:
|
| 748 |
-
# # duplicate_indices_in_test.append(i)
|
| 749 |
-
# # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 750 |
-
|
| 751 |
-
# # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 752 |
-
|
| 753 |
-
# # def display_word_differences(x: str, y: str) -> str:
|
| 754 |
-
# # diff = ndiff(x.split(), y.split())
|
| 755 |
-
# # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 756 |
-
|
| 757 |
-
# # def perform_deduplication(
|
| 758 |
-
# # deduplication_type,
|
| 759 |
-
# # dataset1_name,
|
| 760 |
-
# # dataset1_split,
|
| 761 |
-
# # dataset1_text_column,
|
| 762 |
-
# # dataset2_name="",
|
| 763 |
-
# # dataset2_split="",
|
| 764 |
-
# # dataset2_text_column="",
|
| 765 |
-
# # threshold=default_threshold,
|
| 766 |
-
# # progress=gr.Progress(track_tqdm=True)
|
| 767 |
-
# # ):
|
| 768 |
-
# # try:
|
| 769 |
-
# # # Convert threshold to float
|
| 770 |
-
# # threshold = float(threshold)
|
| 771 |
-
|
| 772 |
-
# # # Initialize status message
|
| 773 |
-
# # status = ""
|
| 774 |
-
|
| 775 |
-
# # if deduplication_type == "Single dataset":
|
| 776 |
-
# # # Load Dataset 1
|
| 777 |
-
# # status = "Loading Dataset 1..."
|
| 778 |
-
# # yield status, ""
|
| 779 |
-
# # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 780 |
-
# # ds = ds_default1
|
| 781 |
-
# # else:
|
| 782 |
-
# # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 783 |
-
|
| 784 |
-
# # # Extract texts
|
| 785 |
-
# # status = "Extracting texts from Dataset 1..."
|
| 786 |
-
# # yield status, ""
|
| 787 |
-
# # texts = [example[dataset1_text_column] for example in ds]
|
| 788 |
-
|
| 789 |
-
# # # Compute embeddings
|
| 790 |
-
# # status = "Computing embeddings for Dataset 1..."
|
| 791 |
-
# # yield status, ""
|
| 792 |
-
# # embedding_matrix = compute_embeddings(texts, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 793 |
-
|
| 794 |
-
# # # Deduplicate
|
| 795 |
-
# # status = "Deduplicating embeddings..."
|
| 796 |
-
# # yield status, ""
|
| 797 |
-
# # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 798 |
-
# # embedding_matrix, threshold, progress=progress
|
| 799 |
-
# # )
|
| 800 |
-
|
| 801 |
-
# # # Prepare the results
|
| 802 |
-
# # num_duplicates = len(duplicate_to_original_mapping)
|
| 803 |
-
# # num_total = len(texts)
|
| 804 |
-
# # num_deduplicated = len(deduplicated_indices)
|
| 805 |
-
|
| 806 |
-
# # result_text = f"**Total documents:** {num_total}\n"
|
| 807 |
-
# # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 808 |
-
# # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 809 |
-
|
| 810 |
-
# # # Show deduplicated examples
|
| 811 |
-
# # if num_duplicates > 0:
|
| 812 |
-
# # result_text += "**Examples of duplicates found:**\n\n"
|
| 813 |
-
# # num_examples = min(5, num_duplicates)
|
| 814 |
-
# # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 815 |
-
# # original_text = texts[original_idx]
|
| 816 |
-
# # duplicate_text = texts[duplicate_idx]
|
| 817 |
-
# # differences = display_word_differences(original_text, duplicate_text)
|
| 818 |
-
# # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 819 |
-
# # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 820 |
-
# # result_text += f"**Differences:**\n{differences}\n"
|
| 821 |
-
# # result_text += "-" * 50 + "\n\n"
|
| 822 |
-
# # else:
|
| 823 |
-
# # result_text += "No duplicates found."
|
| 824 |
-
|
| 825 |
-
# # # Final status
|
| 826 |
-
# # status = "Deduplication completed."
|
| 827 |
-
# # yield status, result_text
|
| 828 |
-
|
| 829 |
-
# # elif deduplication_type == "Cross-dataset":
|
| 830 |
-
# # # Load Dataset 1
|
| 831 |
-
# # status = "Loading Dataset 1..."
|
| 832 |
-
# # yield status, ""
|
| 833 |
-
# # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 834 |
-
# # ds1 = ds_default1
|
| 835 |
-
# # else:
|
| 836 |
-
# # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 837 |
-
|
| 838 |
-
# # # Load Dataset 2
|
| 839 |
-
# # status = "Loading Dataset 2..."
|
| 840 |
-
# # yield status, ""
|
| 841 |
-
# # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 842 |
-
# # ds2 = ds_default2
|
| 843 |
-
# # else:
|
| 844 |
-
# # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 845 |
-
|
| 846 |
-
# # # Extract texts from Dataset 1
|
| 847 |
-
# # status = "Extracting texts from Dataset 1..."
|
| 848 |
-
# # yield status, ""
|
| 849 |
-
# # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 850 |
-
|
| 851 |
-
# # # Extract texts from Dataset 2
|
| 852 |
-
# # status = "Extracting texts from Dataset 2..."
|
| 853 |
-
# # yield status, ""
|
| 854 |
-
# # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 855 |
-
|
| 856 |
-
# # # Compute embeddings for Dataset 1
|
| 857 |
-
# # status = "Computing embeddings for Dataset 1..."
|
| 858 |
-
# # yield status, ""
|
| 859 |
-
# # embedding_matrix1 = compute_embeddings(texts1, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 1")
|
| 860 |
-
|
| 861 |
-
# # # Compute embeddings for Dataset 2
|
| 862 |
-
# # status = "Computing embeddings for Dataset 2..."
|
| 863 |
-
# # yield status, ""
|
| 864 |
-
# # embedding_matrix2 = compute_embeddings(texts2, batch_size=64, progress=progress, desc="Computing embeddings for Dataset 2")
|
| 865 |
-
|
| 866 |
-
# # # Deduplicate across datasets
|
| 867 |
-
# # status = "Deduplicating embeddings across datasets..."
|
| 868 |
-
# # yield status, ""
|
| 869 |
-
# # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 870 |
-
# # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 871 |
-
# # )
|
| 872 |
-
|
| 873 |
-
# # num_duplicates = len(duplicate_indices_in_ds2)
|
| 874 |
-
# # num_total_ds2 = len(texts2)
|
| 875 |
-
# # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 876 |
-
|
| 877 |
-
# # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n\n"
|
| 878 |
-
# # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n\n"
|
| 879 |
-
# # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 880 |
-
|
| 881 |
-
# # # Show deduplicated examples
|
| 882 |
-
# # if num_duplicates > 0:
|
| 883 |
-
# # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 884 |
-
# # num_examples = min(5, num_duplicates)
|
| 885 |
-
# # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 886 |
-
# # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 887 |
-
# # original_text = texts1[original_idx]
|
| 888 |
-
# # duplicate_text = texts2[duplicate_idx]
|
| 889 |
-
# # differences = display_word_differences(original_text, duplicate_text)
|
| 890 |
-
# # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 891 |
-
# # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 892 |
-
# # result_text += f"**Differences:**\n{differences}\n"
|
| 893 |
-
# # result_text += "-" * 50 + "\n\n"
|
| 894 |
-
# # else:
|
| 895 |
-
# # result_text += "No duplicates found."
|
| 896 |
-
|
| 897 |
-
# # # Final status
|
| 898 |
-
# # status = "Deduplication completed."
|
| 899 |
-
# # yield status, result_text
|
| 900 |
-
|
| 901 |
-
# # except Exception as e:
|
| 902 |
-
# # yield f"An error occurred: {e}", ""
|
| 903 |
-
# # raise e
|
| 904 |
-
|
| 905 |
-
# # with gr.Blocks() as demo:
|
| 906 |
-
# # gr.Markdown("# Semantic Deduplication")
|
| 907 |
-
|
| 908 |
-
# # deduplication_type = gr.Radio(
|
| 909 |
-
# # choices=["Single dataset", "Cross-dataset"],
|
| 910 |
-
# # label="Deduplication Type",
|
| 911 |
-
# # value="Single dataset"
|
| 912 |
-
# # )
|
| 913 |
-
|
| 914 |
-
# # with gr.Row():
|
| 915 |
-
# # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 916 |
-
# # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 917 |
-
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 918 |
-
|
| 919 |
-
# # dataset2_inputs = gr.Column(visible=False)
|
| 920 |
-
# # with dataset2_inputs:
|
| 921 |
-
# # gr.Markdown("### Dataset 2")
|
| 922 |
-
# # with gr.Row():
|
| 923 |
-
# # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 924 |
-
# # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 925 |
-
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 926 |
-
|
| 927 |
-
# # threshold = gr.Slider(
|
| 928 |
-
# # minimum=0.0,
|
| 929 |
-
# # maximum=1.0,
|
| 930 |
-
# # value=default_threshold,
|
| 931 |
-
# # label="Similarity Threshold"
|
| 932 |
-
# # )
|
| 933 |
-
|
| 934 |
-
# # compute_button = gr.Button("Compute")
|
| 935 |
-
|
| 936 |
-
# # status_output = gr.Markdown()
|
| 937 |
-
# # result_output = gr.Markdown()
|
| 938 |
-
|
| 939 |
-
# # # Function to update the visibility of dataset2_inputs
|
| 940 |
-
# # def update_visibility(deduplication_type_value):
|
| 941 |
-
# # if deduplication_type_value == "Cross-dataset":
|
| 942 |
-
# # return gr.update(visible=True)
|
| 943 |
-
# # else:
|
| 944 |
-
# # return gr.update(visible=False)
|
| 945 |
-
|
| 946 |
-
# # deduplication_type.change(
|
| 947 |
-
# # update_visibility,
|
| 948 |
-
# # inputs=deduplication_type,
|
| 949 |
-
# # outputs=dataset2_inputs
|
| 950 |
-
# # )
|
| 951 |
-
|
| 952 |
-
# # compute_button.click(
|
| 953 |
-
# # fn=perform_deduplication,
|
| 954 |
-
# # inputs=[
|
| 955 |
-
# # deduplication_type,
|
| 956 |
-
# # dataset1_name,
|
| 957 |
-
# # dataset1_split,
|
| 958 |
-
# # dataset1_text_column,
|
| 959 |
-
# # dataset2_name,
|
| 960 |
-
# # dataset2_split,
|
| 961 |
-
# # dataset2_text_column,
|
| 962 |
-
# # threshold
|
| 963 |
-
# # ],
|
| 964 |
-
# # outputs=[status_output, result_output]
|
| 965 |
-
# # )
|
| 966 |
-
|
| 967 |
-
# # demo.launch()
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
# # # import gradio as gr
|
| 991 |
-
# # # from datasets import load_dataset
|
| 992 |
-
# # # import numpy as np
|
| 993 |
-
# # # from model2vec import StaticModel
|
| 994 |
-
# # # from reach import Reach
|
| 995 |
-
# # # from difflib import ndiff
|
| 996 |
-
# # # import sys
|
| 997 |
-
# # # import tqdm
|
| 998 |
-
|
| 999 |
-
# # # # Load the model at startup
|
| 1000 |
-
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 1001 |
-
|
| 1002 |
-
# # # # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 1003 |
-
# # # default_dataset1_name = "sst2"
|
| 1004 |
-
# # # default_dataset1_split = "train"
|
| 1005 |
-
# # # default_dataset2_name = "sst2"
|
| 1006 |
-
# # # default_dataset2_split = "validation"
|
| 1007 |
-
# # # default_text_column = "sentence"
|
| 1008 |
-
# # # default_threshold = 0.9
|
| 1009 |
-
|
| 1010 |
-
# # # # Load the default datasets at startup
|
| 1011 |
-
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1012 |
-
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1013 |
-
|
| 1014 |
-
# # # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[np.ndarray, dict[int, int]]:
|
| 1015 |
-
# # # """
|
| 1016 |
-
# # # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 1017 |
-
# # # """
|
| 1018 |
-
# # # # Building the index
|
| 1019 |
-
# # # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 1020 |
-
|
| 1021 |
-
# # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 1022 |
-
# # # duplicate_to_original_mapping = {}
|
| 1023 |
-
|
| 1024 |
-
# # # # Finding nearest neighbors
|
| 1025 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1026 |
-
# # # embedding_matrix,
|
| 1027 |
-
# # # threshold=threshold,
|
| 1028 |
-
# # # batch_size=batch_size,
|
| 1029 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1030 |
-
# # # )
|
| 1031 |
-
|
| 1032 |
-
# # # # Processing duplicates
|
| 1033 |
-
# # # for i, similar_items in enumerate(results):
|
| 1034 |
-
# # # if i not in deduplicated_indices:
|
| 1035 |
-
# # # continue
|
| 1036 |
-
|
| 1037 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 1038 |
-
|
| 1039 |
-
# # # for sim_idx in similar_indices:
|
| 1040 |
-
# # # if sim_idx in deduplicated_indices:
|
| 1041 |
-
# # # deduplicated_indices.remove(sim_idx)
|
| 1042 |
-
# # # duplicate_to_original_mapping[sim_idx] = i
|
| 1043 |
-
|
| 1044 |
-
# # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 1045 |
-
|
| 1046 |
-
# # # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024) -> tuple[list[int], dict[int, int]]:
|
| 1047 |
-
# # # """
|
| 1048 |
-
# # # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 1049 |
-
# # # """
|
| 1050 |
-
# # # # Building the index from Dataset 1
|
| 1051 |
-
# # # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 1052 |
-
|
| 1053 |
-
# # # duplicate_indices_in_test = []
|
| 1054 |
-
# # # duplicate_to_original_mapping = {}
|
| 1055 |
-
|
| 1056 |
-
# # # # Finding nearest neighbors between datasets
|
| 1057 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1058 |
-
# # # embedding_matrix_2,
|
| 1059 |
-
# # # threshold=threshold,
|
| 1060 |
-
# # # batch_size=batch_size,
|
| 1061 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1062 |
-
# # # )
|
| 1063 |
-
|
| 1064 |
-
# # # # Processing duplicates
|
| 1065 |
-
# # # for i, similar_items in enumerate(results):
|
| 1066 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1067 |
-
|
| 1068 |
-
# # # if similar_indices:
|
| 1069 |
-
# # # duplicate_indices_in_test.append(i)
|
| 1070 |
-
# # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1071 |
-
|
| 1072 |
-
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1073 |
-
|
| 1074 |
-
# # # def display_word_differences(x: str, y: str) -> str:
|
| 1075 |
-
# # # diff = ndiff(x.split(), y.split())
|
| 1076 |
-
# # # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 1077 |
-
|
| 1078 |
-
# # # def perform_deduplication(
|
| 1079 |
-
# # # deduplication_type,
|
| 1080 |
-
# # # dataset1_name,
|
| 1081 |
-
# # # dataset1_split,
|
| 1082 |
-
# # # dataset1_text_column,
|
| 1083 |
-
# # # dataset2_name="",
|
| 1084 |
-
# # # dataset2_split="",
|
| 1085 |
-
# # # dataset2_text_column="",
|
| 1086 |
-
# # # threshold=default_threshold,
|
| 1087 |
-
# # # progress=gr.Progress(track_tqdm=True)
|
| 1088 |
-
# # # ):
|
| 1089 |
-
# # # # Deep Monkey-Patching of tqdm
|
| 1090 |
-
# # # original_tqdm = tqdm.tqdm
|
| 1091 |
-
# # # tqdm.tqdm = progress.tqdm
|
| 1092 |
-
# # # for mod_name in list(sys.modules.keys()):
|
| 1093 |
-
# # # if 'tqdm' in mod_name:
|
| 1094 |
-
# # # sys.modules[mod_name].tqdm = progress.tqdm
|
| 1095 |
-
|
| 1096 |
-
# # # try:
|
| 1097 |
-
# # # # Convert threshold to float
|
| 1098 |
-
# # # threshold = float(threshold)
|
| 1099 |
-
|
| 1100 |
-
# # # # Initialize status message
|
| 1101 |
-
# # # status = ""
|
| 1102 |
-
|
| 1103 |
-
# # # if deduplication_type == "Single dataset":
|
| 1104 |
-
# # # # Load Dataset 1
|
| 1105 |
-
# # # status = "Loading Dataset 1..."
|
| 1106 |
-
# # # yield status, ""
|
| 1107 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1108 |
-
# # # ds = ds_default1
|
| 1109 |
-
# # # else:
|
| 1110 |
-
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1111 |
-
|
| 1112 |
-
# # # # Extract texts
|
| 1113 |
-
# # # status = "Extracting texts from Dataset 1..."
|
| 1114 |
-
# # # yield status, ""
|
| 1115 |
-
# # # texts = [example[dataset1_text_column] for example in ds]
|
| 1116 |
-
|
| 1117 |
-
# # # # Compute embeddings
|
| 1118 |
-
# # # status = "Computing embeddings for Dataset 1..."
|
| 1119 |
-
# # # yield status, ""
|
| 1120 |
-
# # # embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 1121 |
-
|
| 1122 |
-
# # # # Deduplicate
|
| 1123 |
-
# # # status = "Deduplicating embeddings..."
|
| 1124 |
-
# # # yield status, ""
|
| 1125 |
-
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 1126 |
-
# # # embedding_matrix, threshold
|
| 1127 |
-
# # # )
|
| 1128 |
-
|
| 1129 |
-
# # # # Prepare the results
|
| 1130 |
-
# # # num_duplicates = len(duplicate_to_original_mapping)
|
| 1131 |
-
# # # num_total = len(texts)
|
| 1132 |
-
# # # num_deduplicated = len(deduplicated_indices)
|
| 1133 |
-
|
| 1134 |
-
# # # result_text = f"**Total documents:** {num_total}\n"
|
| 1135 |
-
# # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 1136 |
-
# # # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 1137 |
-
|
| 1138 |
-
# # # # Show deduplicated examples
|
| 1139 |
-
# # # if num_duplicates > 0:
|
| 1140 |
-
# # # result_text += "**Examples of duplicates found:**\n\n"
|
| 1141 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1142 |
-
# # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 1143 |
-
# # # original_text = texts[original_idx]
|
| 1144 |
-
# # # duplicate_text = texts[duplicate_idx]
|
| 1145 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1146 |
-
# # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 1147 |
-
# # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 1148 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1149 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1150 |
-
# # # else:
|
| 1151 |
-
# # # result_text += "No duplicates found."
|
| 1152 |
-
|
| 1153 |
-
# # # # Final status
|
| 1154 |
-
# # # status = "Deduplication completed."
|
| 1155 |
-
# # # yield status, result_text
|
| 1156 |
-
|
| 1157 |
-
# # # elif deduplication_type == "Cross-dataset":
|
| 1158 |
-
# # # # Load Dataset 1
|
| 1159 |
-
# # # status = "Loading Dataset 1..."
|
| 1160 |
-
# # # yield status, ""
|
| 1161 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1162 |
-
# # # ds1 = ds_default1
|
| 1163 |
-
# # # else:
|
| 1164 |
-
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 1165 |
-
|
| 1166 |
-
# # # # Load Dataset 2
|
| 1167 |
-
# # # status = "Loading Dataset 2..."
|
| 1168 |
-
# # # yield status, ""
|
| 1169 |
-
# # # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 1170 |
-
# # # ds2 = ds_default2
|
| 1171 |
-
# # # else:
|
| 1172 |
-
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 1173 |
-
|
| 1174 |
-
# # # # Extract texts from Dataset 1
|
| 1175 |
-
# # # status = "Extracting texts from Dataset 1..."
|
| 1176 |
-
# # # yield status, ""
|
| 1177 |
-
# # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 1178 |
-
|
| 1179 |
-
# # # # Extract texts from Dataset 2
|
| 1180 |
-
# # # status = "Extracting texts from Dataset 2..."
|
| 1181 |
-
# # # yield status, ""
|
| 1182 |
-
# # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 1183 |
-
|
| 1184 |
-
# # # # Compute embeddings for Dataset 1
|
| 1185 |
-
# # # status = "Computing embeddings for Dataset 1..."
|
| 1186 |
-
# # # yield status, ""
|
| 1187 |
-
# # # embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 1188 |
-
|
| 1189 |
-
# # # # Compute embeddings for Dataset 2
|
| 1190 |
-
# # # status = "Computing embeddings for Dataset 2..."
|
| 1191 |
-
# # # yield status, ""
|
| 1192 |
-
# # # embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 1193 |
-
|
| 1194 |
-
# # # # Deduplicate across datasets
|
| 1195 |
-
# # # status = "Deduplicating embeddings across datasets..."
|
| 1196 |
-
# # # yield status, ""
|
| 1197 |
-
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 1198 |
-
# # # embedding_matrix1, embedding_matrix2, threshold
|
| 1199 |
-
# # # )
|
| 1200 |
-
|
| 1201 |
-
# # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 1202 |
-
# # # num_total_ds2 = len(texts2)
|
| 1203 |
-
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 1204 |
-
|
| 1205 |
-
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 1206 |
-
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 1207 |
-
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 1208 |
-
|
| 1209 |
-
# # # # Show deduplicated examples
|
| 1210 |
-
# # # if num_duplicates > 0:
|
| 1211 |
-
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 1212 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1213 |
-
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 1214 |
-
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 1215 |
-
# # # original_text = texts1[original_idx]
|
| 1216 |
-
# # # duplicate_text = texts2[duplicate_idx]
|
| 1217 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1218 |
-
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 1219 |
-
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 1220 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1221 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1222 |
-
# # # else:
|
| 1223 |
-
# # # result_text += "No duplicates found."
|
| 1224 |
-
|
| 1225 |
-
# # # # Final status
|
| 1226 |
-
# # # status = "Deduplication completed."
|
| 1227 |
-
# # # yield status, result_text
|
| 1228 |
-
|
| 1229 |
-
# # # finally:
|
| 1230 |
-
# # # # Restore original tqdm
|
| 1231 |
-
# # # tqdm.tqdm = original_tqdm
|
| 1232 |
-
# # # for mod_name in list(sys.modules.keys()):
|
| 1233 |
-
# # # if 'tqdm' in mod_name:
|
| 1234 |
-
# # # sys.modules[mod_name].tqdm = original_tqdm
|
| 1235 |
-
|
| 1236 |
-
# # # with gr.Blocks() as demo:
|
| 1237 |
-
# # # gr.Markdown("# Semantic Deduplication")
|
| 1238 |
-
|
| 1239 |
-
# # # deduplication_type = gr.Radio(
|
| 1240 |
-
# # # choices=["Single dataset", "Cross-dataset"],
|
| 1241 |
-
# # # label="Deduplication Type",
|
| 1242 |
-
# # # value="Single dataset"
|
| 1243 |
-
# # # )
|
| 1244 |
-
|
| 1245 |
-
# # # with gr.Row():
|
| 1246 |
-
# # # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 1247 |
-
# # # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 1248 |
-
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1249 |
-
|
| 1250 |
-
# # # dataset2_inputs = gr.Column(visible=False)
|
| 1251 |
-
# # # with dataset2_inputs:
|
| 1252 |
-
# # # gr.Markdown("### Dataset 2")
|
| 1253 |
-
# # # with gr.Row():
|
| 1254 |
-
# # # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 1255 |
-
# # # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 1256 |
-
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1257 |
-
|
| 1258 |
-
# # # threshold = gr.Slider(
|
| 1259 |
-
# # # minimum=0.0,
|
| 1260 |
-
# # # maximum=1.0,
|
| 1261 |
-
# # # value=default_threshold,
|
| 1262 |
-
# # # label="Similarity Threshold"
|
| 1263 |
-
# # # )
|
| 1264 |
-
|
| 1265 |
-
# # # compute_button = gr.Button("Compute")
|
| 1266 |
-
|
| 1267 |
-
# # # status_output = gr.Markdown()
|
| 1268 |
-
# # # result_output = gr.Markdown()
|
| 1269 |
-
|
| 1270 |
-
# # # # Function to update the visibility of dataset2_inputs
|
| 1271 |
-
# # # def update_visibility(deduplication_type_value):
|
| 1272 |
-
# # # if deduplication_type_value == "Cross-dataset":
|
| 1273 |
-
# # # return gr.update(visible=True)
|
| 1274 |
-
# # # else:
|
| 1275 |
-
# # # return gr.update(visible=False)
|
| 1276 |
-
|
| 1277 |
-
# # # deduplication_type.change(
|
| 1278 |
-
# # # update_visibility,
|
| 1279 |
-
# # # inputs=deduplication_type,
|
| 1280 |
-
# # # outputs=dataset2_inputs
|
| 1281 |
-
# # # )
|
| 1282 |
-
|
| 1283 |
-
# # # compute_button.click(
|
| 1284 |
-
# # # fn=perform_deduplication,
|
| 1285 |
-
# # # inputs=[
|
| 1286 |
-
# # # deduplication_type,
|
| 1287 |
-
# # # dataset1_name,
|
| 1288 |
-
# # # dataset1_split,
|
| 1289 |
-
# # # dataset1_text_column,
|
| 1290 |
-
# # # dataset2_name,
|
| 1291 |
-
# # # dataset2_split,
|
| 1292 |
-
# # # dataset2_text_column,
|
| 1293 |
-
# # # threshold
|
| 1294 |
-
# # # ],
|
| 1295 |
-
# # # outputs=[status_output, result_output]
|
| 1296 |
-
# # # )
|
| 1297 |
-
|
| 1298 |
-
# # # demo.launch()
|
| 1299 |
-
|
| 1300 |
-
|
| 1301 |
-
# # # import gradio as gr
|
| 1302 |
-
# # # from datasets import load_dataset
|
| 1303 |
-
# # # import numpy as np
|
| 1304 |
-
# # # from model2vec import StaticModel
|
| 1305 |
-
# # # from reach import Reach
|
| 1306 |
-
# # # from difflib import ndiff
|
| 1307 |
-
# # # import sys
|
| 1308 |
-
# # # import tqdm
|
| 1309 |
-
|
| 1310 |
-
# # # # Load the model at startup
|
| 1311 |
-
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 1312 |
-
|
| 1313 |
-
# # # # Update default dataset to 'sst2' and set default threshold to 0.9
|
| 1314 |
-
# # # default_dataset1_name = "sst2"
|
| 1315 |
-
# # # default_dataset1_split = "train"
|
| 1316 |
-
# # # default_dataset2_name = "sst2"
|
| 1317 |
-
# # # default_dataset2_split = "validation"
|
| 1318 |
-
# # # default_text_column = "sentence"
|
| 1319 |
-
# # # default_threshold = 0.9
|
| 1320 |
-
|
| 1321 |
-
# # # # Load the default datasets at startup
|
| 1322 |
-
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1323 |
-
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1324 |
-
|
| 1325 |
-
# # # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 1326 |
-
# # # """
|
| 1327 |
-
# # # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 1328 |
-
# # # """
|
| 1329 |
-
# # # # Update progress to indicate building the index
|
| 1330 |
-
# # # progress(0, desc="Building search index...")
|
| 1331 |
-
# # # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 1332 |
-
|
| 1333 |
-
# # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 1334 |
-
# # # duplicate_to_original_mapping = {}
|
| 1335 |
-
|
| 1336 |
-
# # # # Finding nearest neighbors
|
| 1337 |
-
# # # progress(0, desc="Finding nearest neighbors...")
|
| 1338 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1339 |
-
# # # embedding_matrix,
|
| 1340 |
-
# # # threshold=threshold,
|
| 1341 |
-
# # # batch_size=batch_size,
|
| 1342 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1343 |
-
# # # )
|
| 1344 |
-
|
| 1345 |
-
# # # # Processing duplicates with a progress bar
|
| 1346 |
-
# # # total_items = len(embedding_matrix)
|
| 1347 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=total_items)):
|
| 1348 |
-
# # # if i not in deduplicated_indices:
|
| 1349 |
-
# # # continue
|
| 1350 |
-
|
| 1351 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 1352 |
-
|
| 1353 |
-
# # # for sim_idx in similar_indices:
|
| 1354 |
-
# # # if sim_idx in deduplicated_indices:
|
| 1355 |
-
# # # deduplicated_indices.remove(sim_idx)
|
| 1356 |
-
# # # duplicate_to_original_mapping[sim_idx] = i
|
| 1357 |
-
|
| 1358 |
-
# # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 1359 |
-
|
| 1360 |
-
# # # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 1361 |
-
# # # """
|
| 1362 |
-
# # # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 1363 |
-
# # # """
|
| 1364 |
-
# # # # Update progress to indicate building the index
|
| 1365 |
-
# # # progress(0, desc="Building search index from Dataset 1...")
|
| 1366 |
-
# # # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 1367 |
-
|
| 1368 |
-
# # # duplicate_indices_in_test = []
|
| 1369 |
-
# # # duplicate_to_original_mapping = {}
|
| 1370 |
-
|
| 1371 |
-
# # # # Finding nearest neighbors between datasets
|
| 1372 |
-
# # # progress(0, desc="Finding nearest neighbors between datasets...")
|
| 1373 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1374 |
-
# # # embedding_matrix_2,
|
| 1375 |
-
# # # threshold=threshold,
|
| 1376 |
-
# # # batch_size=batch_size,
|
| 1377 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1378 |
-
# # # )
|
| 1379 |
-
|
| 1380 |
-
# # # total_items = len(embedding_matrix_2)
|
| 1381 |
-
# # # # Processing duplicates with a progress bar
|
| 1382 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)):
|
| 1383 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1384 |
-
|
| 1385 |
-
# # # if similar_indices:
|
| 1386 |
-
# # # duplicate_indices_in_test.append(i)
|
| 1387 |
-
# # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1388 |
-
|
| 1389 |
-
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1390 |
-
|
| 1391 |
-
# # # def display_word_differences(x: str, y: str) -> str:
|
| 1392 |
-
# # # diff = ndiff(x.split(), y.split())
|
| 1393 |
-
# # # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 1394 |
-
|
| 1395 |
-
# # # def perform_deduplication(
|
| 1396 |
-
# # # deduplication_type,
|
| 1397 |
-
# # # dataset1_name,
|
| 1398 |
-
# # # dataset1_split,
|
| 1399 |
-
# # # dataset1_text_column,
|
| 1400 |
-
# # # dataset2_name="",
|
| 1401 |
-
# # # dataset2_split="",
|
| 1402 |
-
# # # dataset2_text_column="",
|
| 1403 |
-
# # # threshold=default_threshold,
|
| 1404 |
-
# # # progress=gr.Progress(track_tqdm=True)
|
| 1405 |
-
# # # ):
|
| 1406 |
-
# # # # Monkey-patch tqdm
|
| 1407 |
-
# # # original_tqdm = tqdm.tqdm
|
| 1408 |
-
# # # original_reach_tqdm = Reach.__dict__['tqdm'] if 'tqdm' in Reach.__dict__ else None
|
| 1409 |
-
# # # tqdm.tqdm = progress.tqdm
|
| 1410 |
-
# # # sys.modules['tqdm'].tqdm = progress.tqdm
|
| 1411 |
-
# # # sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
| 1412 |
-
# # # Reach.tqdm = progress.tqdm # Monkey-patch reach's tqdm
|
| 1413 |
-
|
| 1414 |
-
# # # try:
|
| 1415 |
-
# # # # Convert threshold to float
|
| 1416 |
-
# # # threshold = float(threshold)
|
| 1417 |
-
|
| 1418 |
-
# # # if deduplication_type == "Single dataset":
|
| 1419 |
-
# # # # Load Dataset 1
|
| 1420 |
-
# # # progress(0, desc="Loading Dataset 1...")
|
| 1421 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1422 |
-
# # # ds = ds_default1
|
| 1423 |
-
# # # else:
|
| 1424 |
-
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1425 |
-
|
| 1426 |
-
# # # # Extract texts
|
| 1427 |
-
# # # progress(0, desc="Extracting texts from Dataset 1...")
|
| 1428 |
-
# # # texts = [example[dataset1_text_column] for example in ds]
|
| 1429 |
-
|
| 1430 |
-
# # # # Compute embeddings
|
| 1431 |
-
# # # progress(0, desc="Computing embeddings for Dataset 1...")
|
| 1432 |
-
# # # embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 1433 |
-
|
| 1434 |
-
# # # # Deduplicate
|
| 1435 |
-
# # # result_text = deduplicate_and_prepare_results_single(
|
| 1436 |
-
# # # embedding_matrix, texts, threshold, progress
|
| 1437 |
-
# # # )
|
| 1438 |
-
|
| 1439 |
-
# # # return result_text
|
| 1440 |
-
|
| 1441 |
-
# # # elif deduplication_type == "Cross-dataset":
|
| 1442 |
-
# # # # Load Dataset 1
|
| 1443 |
-
# # # progress(0, desc="Loading Dataset 1...")
|
| 1444 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1445 |
-
# # # ds1 = ds_default1
|
| 1446 |
-
# # # else:
|
| 1447 |
-
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 1448 |
-
|
| 1449 |
-
# # # # Load Dataset 2
|
| 1450 |
-
# # # progress(0, desc="Loading Dataset 2...")
|
| 1451 |
-
# # # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 1452 |
-
# # # ds2 = ds_default2
|
| 1453 |
-
# # # else:
|
| 1454 |
-
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 1455 |
-
|
| 1456 |
-
# # # # Extract texts from Dataset 1
|
| 1457 |
-
# # # progress(0, desc="Extracting texts from Dataset 1...")
|
| 1458 |
-
# # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 1459 |
-
|
| 1460 |
-
# # # # Extract texts from Dataset 2
|
| 1461 |
-
# # # progress(0, desc="Extracting texts from Dataset 2...")
|
| 1462 |
-
# # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 1463 |
-
|
| 1464 |
-
# # # # Compute embeddings for Dataset 1
|
| 1465 |
-
# # # progress(0, desc="Computing embeddings for Dataset 1...")
|
| 1466 |
-
# # # embedding_matrix1 = model.encode(texts1, show_progressbar=True)
|
| 1467 |
-
|
| 1468 |
-
# # # # Compute embeddings for Dataset 2
|
| 1469 |
-
# # # progress(0, desc="Computing embeddings for Dataset 2...")
|
| 1470 |
-
# # # embedding_matrix2 = model.encode(texts2, show_progressbar=True)
|
| 1471 |
-
|
| 1472 |
-
# # # # Deduplicate across datasets
|
| 1473 |
-
# # # result_text = deduplicate_and_prepare_results_cross(
|
| 1474 |
-
# # # embedding_matrix1, embedding_matrix2, texts1, texts2, threshold, progress, dataset2_name, dataset2_split
|
| 1475 |
-
# # # )
|
| 1476 |
-
|
| 1477 |
-
# # # return result_text
|
| 1478 |
-
|
| 1479 |
-
# # # finally:
|
| 1480 |
-
# # # # Restore original tqdm
|
| 1481 |
-
# # # tqdm.tqdm = original_tqdm
|
| 1482 |
-
# # # sys.modules['tqdm'].tqdm = original_tqdm
|
| 1483 |
-
# # # sys.modules['tqdm.auto'].tqdm = original_tqdm
|
| 1484 |
-
|
| 1485 |
-
# # # # Restore reach's original tqdm
|
| 1486 |
-
# # # if original_reach_tqdm is not None:
|
| 1487 |
-
# # # Reach.tqdm = original_reach_tqdm
|
| 1488 |
-
# # # else:
|
| 1489 |
-
# # # del Reach.tqdm # If it wasn't originally in Reach's __dict__
|
| 1490 |
-
|
| 1491 |
-
# # # def deduplicate_and_prepare_results_single(embedding_matrix, texts, threshold, progress):
|
| 1492 |
-
# # # # Deduplicate
|
| 1493 |
-
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(
|
| 1494 |
-
# # # embedding_matrix, threshold, progress=progress
|
| 1495 |
-
# # # )
|
| 1496 |
-
|
| 1497 |
-
# # # # Prepare the results
|
| 1498 |
-
# # # num_duplicates = len(duplicate_to_original_mapping)
|
| 1499 |
-
# # # num_total = len(texts)
|
| 1500 |
-
# # # num_deduplicated = len(deduplicated_indices)
|
| 1501 |
-
|
| 1502 |
-
# # # result_text = f"**Total documents:** {num_total}\n"
|
| 1503 |
-
# # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 1504 |
-
# # # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 1505 |
-
|
| 1506 |
-
# # # # Show deduplicated examples
|
| 1507 |
-
# # # if num_duplicates > 0:
|
| 1508 |
-
# # # result_text += "**Examples of duplicates found:**\n\n"
|
| 1509 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1510 |
-
# # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 1511 |
-
# # # original_text = texts[original_idx]
|
| 1512 |
-
# # # duplicate_text = texts[duplicate_idx]
|
| 1513 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1514 |
-
# # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 1515 |
-
# # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 1516 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1517 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1518 |
-
# # # else:
|
| 1519 |
-
# # # result_text += "No duplicates found."
|
| 1520 |
-
|
| 1521 |
-
# # # return result_text
|
| 1522 |
-
|
| 1523 |
-
# # # def deduplicate_and_prepare_results_cross(embedding_matrix1, embedding_matrix2, texts1, texts2, threshold, progress, dataset2_name, dataset2_split):
|
| 1524 |
-
# # # # Deduplicate across datasets
|
| 1525 |
-
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 1526 |
-
# # # embedding_matrix1, embedding_matrix2, threshold, progress=progress
|
| 1527 |
-
# # # )
|
| 1528 |
-
|
| 1529 |
-
# # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 1530 |
-
# # # num_total_ds2 = len(texts2)
|
| 1531 |
-
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 1532 |
-
|
| 1533 |
-
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 1534 |
-
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 1535 |
-
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 1536 |
-
|
| 1537 |
-
# # # # Show deduplicated examples
|
| 1538 |
-
# # # if num_duplicates > 0:
|
| 1539 |
-
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 1540 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1541 |
-
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 1542 |
-
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 1543 |
-
# # # original_text = texts1[original_idx]
|
| 1544 |
-
# # # duplicate_text = texts2[duplicate_idx]
|
| 1545 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1546 |
-
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 1547 |
-
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 1548 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1549 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1550 |
-
# # # else:
|
| 1551 |
-
# # # result_text += "No duplicates found."
|
| 1552 |
-
|
| 1553 |
-
# # # return result_text
|
| 1554 |
-
|
| 1555 |
-
# # # with gr.Blocks() as demo:
|
| 1556 |
-
# # # gr.Markdown("# Semantic Deduplication")
|
| 1557 |
-
|
| 1558 |
-
# # # deduplication_type = gr.Radio(
|
| 1559 |
-
# # # choices=["Single dataset", "Cross-dataset"],
|
| 1560 |
-
# # # label="Deduplication Type",
|
| 1561 |
-
# # # value="Single dataset"
|
| 1562 |
-
# # # )
|
| 1563 |
-
|
| 1564 |
-
# # # with gr.Row():
|
| 1565 |
-
# # # dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
|
| 1566 |
-
# # # dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
|
| 1567 |
-
# # # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1568 |
-
|
| 1569 |
-
# # # dataset2_inputs = gr.Column(visible=False)
|
| 1570 |
-
# # # with dataset2_inputs:
|
| 1571 |
-
# # # gr.Markdown("### Dataset 2")
|
| 1572 |
-
# # # with gr.Row():
|
| 1573 |
-
# # # dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
|
| 1574 |
-
# # # dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
|
| 1575 |
-
# # # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
| 1576 |
-
|
| 1577 |
-
# # # threshold = gr.Slider(
|
| 1578 |
-
# # # minimum=0.0,
|
| 1579 |
-
# # # maximum=1.0,
|
| 1580 |
-
# # # value=default_threshold,
|
| 1581 |
-
# # # label="Similarity Threshold"
|
| 1582 |
-
# # # )
|
| 1583 |
-
|
| 1584 |
-
# # # compute_button = gr.Button("Compute")
|
| 1585 |
-
|
| 1586 |
-
# # # output = gr.Markdown()
|
| 1587 |
-
|
| 1588 |
-
# # # # Function to update the visibility of dataset2_inputs
|
| 1589 |
-
# # # def update_visibility(deduplication_type_value):
|
| 1590 |
-
# # # if deduplication_type_value == "Cross-dataset":
|
| 1591 |
-
# # # return gr.update(visible=True)
|
| 1592 |
-
# # # else:
|
| 1593 |
-
# # # return gr.update(visible=False)
|
| 1594 |
-
|
| 1595 |
-
# # # deduplication_type.change(
|
| 1596 |
-
# # # update_visibility,
|
| 1597 |
-
# # # inputs=deduplication_type,
|
| 1598 |
-
# # # outputs=dataset2_inputs
|
| 1599 |
-
# # # )
|
| 1600 |
-
|
| 1601 |
-
# # # compute_button.click(
|
| 1602 |
-
# # # fn=perform_deduplication,
|
| 1603 |
-
# # # inputs=[
|
| 1604 |
-
# # # deduplication_type,
|
| 1605 |
-
# # # dataset1_name,
|
| 1606 |
-
# # # dataset1_split,
|
| 1607 |
-
# # # dataset1_text_column,
|
| 1608 |
-
# # # dataset2_name,
|
| 1609 |
-
# # # dataset2_split,
|
| 1610 |
-
# # # dataset2_text_column,
|
| 1611 |
-
# # # threshold
|
| 1612 |
-
# # # ],
|
| 1613 |
-
# # # outputs=output
|
| 1614 |
-
# # # )
|
| 1615 |
-
|
| 1616 |
-
# # # demo.launch()
|
| 1617 |
-
|
| 1618 |
-
|
| 1619 |
-
|
| 1620 |
-
|
| 1621 |
-
# # # import gradio as gr
|
| 1622 |
-
# # # from datasets import load_dataset
|
| 1623 |
-
# # # import numpy as np
|
| 1624 |
-
# # # from model2vec import StaticModel
|
| 1625 |
-
# # # from reach import Reach
|
| 1626 |
-
# # # from difflib import ndiff
|
| 1627 |
-
# # # import sys
|
| 1628 |
-
# # # import tqdm
|
| 1629 |
-
|
| 1630 |
-
# # # # Load the model at startup
|
| 1631 |
-
# # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 1632 |
-
|
| 1633 |
-
# # # # Load the default datasets at startup
|
| 1634 |
-
# # # default_dataset1_name = "ag_news"
|
| 1635 |
-
# # # default_dataset1_split = "train"
|
| 1636 |
-
# # # default_dataset2_name = "ag_news"
|
| 1637 |
-
# # # default_dataset2_split = "test"
|
| 1638 |
-
|
| 1639 |
-
# # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1640 |
-
# # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1641 |
-
|
| 1642 |
-
# # # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 1643 |
-
# # # """
|
| 1644 |
-
# # # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 1645 |
-
# # # """
|
| 1646 |
-
# # # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 1647 |
-
|
| 1648 |
-
# # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 1649 |
-
# # # duplicate_to_original_mapping = {}
|
| 1650 |
-
|
| 1651 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1652 |
-
# # # embedding_matrix,
|
| 1653 |
-
# # # threshold=threshold,
|
| 1654 |
-
# # # batch_size=batch_size,
|
| 1655 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1656 |
-
# # # )
|
| 1657 |
-
|
| 1658 |
-
# # # # Process duplicates
|
| 1659 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embedding_matrix))):
|
| 1660 |
-
# # # if i not in deduplicated_indices:
|
| 1661 |
-
# # # continue
|
| 1662 |
-
|
| 1663 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 1664 |
-
|
| 1665 |
-
# # # for sim_idx in similar_indices:
|
| 1666 |
-
# # # if sim_idx in deduplicated_indices:
|
| 1667 |
-
# # # deduplicated_indices.remove(sim_idx)
|
| 1668 |
-
# # # duplicate_to_original_mapping[sim_idx] = i
|
| 1669 |
-
|
| 1670 |
-
# # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 1671 |
-
|
| 1672 |
-
# # # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 1673 |
-
# # # """
|
| 1674 |
-
# # # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 1675 |
-
# # # """
|
| 1676 |
-
# # # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 1677 |
-
|
| 1678 |
-
# # # duplicate_indices_in_test = []
|
| 1679 |
-
# # # duplicate_to_original_mapping = {}
|
| 1680 |
-
|
| 1681 |
-
# # # results = reach.nearest_neighbor_threshold(
|
| 1682 |
-
# # # embedding_matrix_2,
|
| 1683 |
-
# # # threshold=threshold,
|
| 1684 |
-
# # # batch_size=batch_size,
|
| 1685 |
-
# # # show_progressbar=True # Allow internal progress bar
|
| 1686 |
-
# # # )
|
| 1687 |
-
|
| 1688 |
-
# # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets", total=len(embedding_matrix_2))):
|
| 1689 |
-
# # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1690 |
-
|
| 1691 |
-
# # # if similar_indices:
|
| 1692 |
-
# # # duplicate_indices_in_test.append(i)
|
| 1693 |
-
# # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1694 |
-
|
| 1695 |
-
# # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1696 |
-
|
| 1697 |
-
# # # def display_word_differences(x: str, y: str) -> str:
|
| 1698 |
-
# # # diff = ndiff(x.split(), y.split())
|
| 1699 |
-
# # # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 1700 |
-
|
| 1701 |
-
# # # def perform_deduplication(
|
| 1702 |
-
# # # deduplication_type,
|
| 1703 |
-
# # # dataset1_name,
|
| 1704 |
-
# # # dataset1_split,
|
| 1705 |
-
# # # dataset1_text_column,
|
| 1706 |
-
# # # dataset2_name="",
|
| 1707 |
-
# # # dataset2_split="",
|
| 1708 |
-
# # # dataset2_text_column="",
|
| 1709 |
-
# # # threshold=0.8,
|
| 1710 |
-
# # # progress=gr.Progress(track_tqdm=True)
|
| 1711 |
-
# # # ):
|
| 1712 |
-
# # # # Monkey-patch tqdm
|
| 1713 |
-
# # # original_tqdm = tqdm.tqdm
|
| 1714 |
-
# # # original_reach_tqdm = Reach.__dict__['tqdm'] if 'tqdm' in Reach.__dict__ else None
|
| 1715 |
-
# # # tqdm.tqdm = progress.tqdm
|
| 1716 |
-
# # # sys.modules['tqdm'].tqdm = progress.tqdm
|
| 1717 |
-
# # # sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
| 1718 |
-
# # # Reach.tqdm = progress.tqdm # Monkey-patch reach's tqdm
|
| 1719 |
-
|
| 1720 |
-
# # # try:
|
| 1721 |
-
# # # # Convert threshold to float
|
| 1722 |
-
# # # threshold = float(threshold)
|
| 1723 |
-
|
| 1724 |
-
# # # if deduplication_type == "Single dataset":
|
| 1725 |
-
# # # # Check if the dataset is the default one
|
| 1726 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1727 |
-
# # # ds = ds_default1
|
| 1728 |
-
# # # else:
|
| 1729 |
-
# # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1730 |
-
|
| 1731 |
-
# # # # Extract texts
|
| 1732 |
-
# # # texts = [example[dataset1_text_column] for example in ds]
|
| 1733 |
-
|
| 1734 |
-
# # # # Compute embeddings
|
| 1735 |
-
# # # embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 1736 |
-
|
| 1737 |
-
# # # # Deduplicate
|
| 1738 |
-
# # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 1739 |
-
|
| 1740 |
-
# # # # Prepare the results
|
| 1741 |
-
# # # num_duplicates = len(duplicate_to_original_mapping)
|
| 1742 |
-
# # # num_total = len(texts)
|
| 1743 |
-
# # # num_deduplicated = len(deduplicated_indices)
|
| 1744 |
-
|
| 1745 |
-
# # # result_text = f"**Total documents:** {num_total}\n"
|
| 1746 |
-
# # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 1747 |
-
# # # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 1748 |
-
|
| 1749 |
-
# # # # Show deduplicated examples
|
| 1750 |
-
# # # result_text += "**Examples of duplicates found:**\n\n"
|
| 1751 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1752 |
-
# # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 1753 |
-
# # # original_text = texts[original_idx]
|
| 1754 |
-
# # # duplicate_text = texts[duplicate_idx]
|
| 1755 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1756 |
-
# # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 1757 |
-
# # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 1758 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1759 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1760 |
-
|
| 1761 |
-
# # # return result_text
|
| 1762 |
-
|
| 1763 |
-
# # # elif deduplication_type == "Cross-dataset":
|
| 1764 |
-
# # # # Dataset 1
|
| 1765 |
-
# # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1766 |
-
# # # ds1 = ds_default1
|
| 1767 |
-
# # # else:
|
| 1768 |
-
# # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 1769 |
-
|
| 1770 |
-
# # # # Dataset 2
|
| 1771 |
-
# # # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 1772 |
-
# # # ds2 = ds_default2
|
| 1773 |
-
# # # else:
|
| 1774 |
-
# # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 1775 |
-
|
| 1776 |
-
# # # # Extract texts
|
| 1777 |
-
# # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 1778 |
-
# # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 1779 |
-
|
| 1780 |
-
# # # # Compute embeddings
|
| 1781 |
-
# # # embedding_matrix1 = model.encode(texts1, show_progressbar=True) # Enable internal progress bar
|
| 1782 |
-
# # # embedding_matrix2 = model.encode(texts2, show_progressbar=True) # Enable internal progress bar
|
| 1783 |
-
|
| 1784 |
-
# # # # Deduplicate across datasets
|
| 1785 |
-
# # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
|
| 1786 |
-
# # # embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
| 1787 |
-
|
| 1788 |
-
# # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 1789 |
-
# # # num_total_ds2 = len(texts2)
|
| 1790 |
-
# # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 1791 |
-
|
| 1792 |
-
# # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 1793 |
-
# # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 1794 |
-
# # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 1795 |
-
|
| 1796 |
-
# # # # Show deduplicated examples
|
| 1797 |
-
# # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 1798 |
-
# # # num_examples = min(5, num_duplicates)
|
| 1799 |
-
# # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 1800 |
-
# # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 1801 |
-
# # # original_text = texts1[original_idx]
|
| 1802 |
-
# # # duplicate_text = texts2[duplicate_idx]
|
| 1803 |
-
# # # differences = display_word_differences(original_text, duplicate_text)
|
| 1804 |
-
# # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 1805 |
-
# # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 1806 |
-
# # # result_text += f"**Differences:**\n{differences}\n"
|
| 1807 |
-
# # # result_text += "-" * 50 + "\n\n"
|
| 1808 |
-
|
| 1809 |
-
# # # return result_text
|
| 1810 |
-
|
| 1811 |
-
# # # finally:
|
| 1812 |
-
# # # # Restore original tqdm
|
| 1813 |
-
# # # tqdm.tqdm = original_tqdm
|
| 1814 |
-
# # # sys.modules['tqdm'].tqdm = original_tqdm
|
| 1815 |
-
# # # sys.modules['tqdm.auto'].tqdm = original_tqdm
|
| 1816 |
-
|
| 1817 |
-
# # # # Restore reach's original tqdm
|
| 1818 |
-
# # # if original_reach_tqdm is not None:
|
| 1819 |
-
# # # Reach.tqdm = original_reach_tqdm
|
| 1820 |
-
# # # else:
|
| 1821 |
-
# # # del Reach.tqdm # If it wasn't originally in Reach's __dict__
|
| 1822 |
-
|
| 1823 |
-
# # # with gr.Blocks() as demo:
|
| 1824 |
-
# # # gr.Markdown("# Semantic Deduplication")
|
| 1825 |
-
|
| 1826 |
-
# # # deduplication_type = gr.Radio(
|
| 1827 |
-
# # # choices=["Single dataset", "Cross-dataset"],
|
| 1828 |
-
# # # label="Deduplication Type",
|
| 1829 |
-
# # # value="Single dataset"
|
| 1830 |
-
# # # )
|
| 1831 |
-
|
| 1832 |
-
# # # with gr.Row():
|
| 1833 |
-
# # # dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
|
| 1834 |
-
# # # dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
|
| 1835 |
-
# # # dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 1836 |
-
|
| 1837 |
-
# # # dataset2_inputs = gr.Column(visible=False)
|
| 1838 |
-
# # # with dataset2_inputs:
|
| 1839 |
-
# # # gr.Markdown("### Dataset 2")
|
| 1840 |
-
# # # with gr.Row():
|
| 1841 |
-
# # # dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
|
| 1842 |
-
# # # dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
|
| 1843 |
-
# # # dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 1844 |
-
|
| 1845 |
-
# # # threshold = gr.Slider(
|
| 1846 |
-
# # # minimum=0.0,
|
| 1847 |
-
# # # maximum=1.0,
|
| 1848 |
-
# # # value=0.8,
|
| 1849 |
-
# # # label="Similarity Threshold"
|
| 1850 |
-
# # # )
|
| 1851 |
-
|
| 1852 |
-
# # # compute_button = gr.Button("Compute")
|
| 1853 |
-
|
| 1854 |
-
# # # output = gr.Markdown()
|
| 1855 |
-
|
| 1856 |
-
# # # # Function to update the visibility of dataset2_inputs
|
| 1857 |
-
# # # def update_visibility(deduplication_type_value):
|
| 1858 |
-
# # # if deduplication_type_value == "Cross-dataset":
|
| 1859 |
-
# # # return gr.update(visible=True)
|
| 1860 |
-
# # # else:
|
| 1861 |
-
# # # return gr.update(visible=False)
|
| 1862 |
-
|
| 1863 |
-
# # # deduplication_type.change(
|
| 1864 |
-
# # # update_visibility,
|
| 1865 |
-
# # # inputs=deduplication_type,
|
| 1866 |
-
# # # outputs=dataset2_inputs
|
| 1867 |
-
# # # )
|
| 1868 |
-
|
| 1869 |
-
# # # compute_button.click(
|
| 1870 |
-
# # # fn=perform_deduplication,
|
| 1871 |
-
# # # inputs=[
|
| 1872 |
-
# # # deduplication_type,
|
| 1873 |
-
# # # dataset1_name,
|
| 1874 |
-
# # # dataset1_split,
|
| 1875 |
-
# # # dataset1_text_column,
|
| 1876 |
-
# # # dataset2_name,
|
| 1877 |
-
# # # dataset2_split,
|
| 1878 |
-
# # # dataset2_text_column,
|
| 1879 |
-
# # # threshold
|
| 1880 |
-
# # # ],
|
| 1881 |
-
# # # outputs=output
|
| 1882 |
-
# # # )
|
| 1883 |
-
|
| 1884 |
-
# # # demo.launch()
|
| 1885 |
-
|
| 1886 |
-
|
| 1887 |
-
# # # # import gradio as gr
|
| 1888 |
-
# # # # from datasets import load_dataset
|
| 1889 |
-
# # # # import numpy as np
|
| 1890 |
-
# # # # from model2vec import StaticModel
|
| 1891 |
-
# # # # from reach import Reach
|
| 1892 |
-
# # # # from difflib import ndiff
|
| 1893 |
-
# # # # import sys
|
| 1894 |
-
# # # # import tqdm
|
| 1895 |
-
|
| 1896 |
-
# # # # # Load the model at startup
|
| 1897 |
-
# # # # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
| 1898 |
-
|
| 1899 |
-
# # # # # Load the default datasets at startup
|
| 1900 |
-
# # # # default_dataset1_name = "ag_news"
|
| 1901 |
-
# # # # default_dataset1_split = "train"
|
| 1902 |
-
# # # # default_dataset2_name = "ag_news"
|
| 1903 |
-
# # # # default_dataset2_split = "test"
|
| 1904 |
-
|
| 1905 |
-
# # # # ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
|
| 1906 |
-
# # # # ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)
|
| 1907 |
-
|
| 1908 |
-
# # # # def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[np.ndarray, dict[int, int]]:
|
| 1909 |
-
# # # # """
|
| 1910 |
-
# # # # Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
|
| 1911 |
-
# # # # """
|
| 1912 |
-
# # # # reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
|
| 1913 |
-
|
| 1914 |
-
# # # # deduplicated_indices = set(range(len(embedding_matrix)))
|
| 1915 |
-
# # # # duplicate_to_original_mapping = {}
|
| 1916 |
-
|
| 1917 |
-
# # # # results = reach.nearest_neighbor_threshold(
|
| 1918 |
-
# # # # embedding_matrix,
|
| 1919 |
-
# # # # threshold=threshold,
|
| 1920 |
-
# # # # batch_size=batch_size,
|
| 1921 |
-
# # # # show_progressbar=True # Allow internal progress bar
|
| 1922 |
-
# # # # )
|
| 1923 |
-
|
| 1924 |
-
# # # # # Process duplicates
|
| 1925 |
-
# # # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
|
| 1926 |
-
# # # # if i not in deduplicated_indices:
|
| 1927 |
-
# # # # continue
|
| 1928 |
-
|
| 1929 |
-
# # # # similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
|
| 1930 |
-
|
| 1931 |
-
# # # # for sim_idx in similar_indices:
|
| 1932 |
-
# # # # if sim_idx in deduplicated_indices:
|
| 1933 |
-
# # # # deduplicated_indices.remove(sim_idx)
|
| 1934 |
-
# # # # duplicate_to_original_mapping[sim_idx] = i
|
| 1935 |
-
|
| 1936 |
-
# # # # return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
|
| 1937 |
-
|
| 1938 |
-
# # # # def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=None) -> tuple[list[int], dict[int, int]]:
|
| 1939 |
-
# # # # """
|
| 1940 |
-
# # # # Deduplicate embeddings across two datasets and return the indices of duplicates between them.
|
| 1941 |
-
# # # # """
|
| 1942 |
-
# # # # reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
|
| 1943 |
-
|
| 1944 |
-
# # # # duplicate_indices_in_test = []
|
| 1945 |
-
# # # # duplicate_to_original_mapping = {}
|
| 1946 |
-
|
| 1947 |
-
# # # # results = reach.nearest_neighbor_threshold(
|
| 1948 |
-
# # # # embedding_matrix_2,
|
| 1949 |
-
# # # # threshold=threshold,
|
| 1950 |
-
# # # # batch_size=batch_size,
|
| 1951 |
-
# # # # show_progressbar=True # Allow internal progress bar
|
| 1952 |
-
# # # # )
|
| 1953 |
-
|
| 1954 |
-
# # # # # Process duplicates
|
| 1955 |
-
# # # # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
|
| 1956 |
-
# # # # similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]
|
| 1957 |
-
|
| 1958 |
-
# # # # if similar_indices:
|
| 1959 |
-
# # # # duplicate_indices_in_test.append(i)
|
| 1960 |
-
# # # # duplicate_to_original_mapping[i] = similar_indices[0]
|
| 1961 |
-
|
| 1962 |
-
# # # # return duplicate_indices_in_test, duplicate_to_original_mapping
|
| 1963 |
-
|
| 1964 |
-
# # # # def display_word_differences(x: str, y: str) -> str:
|
| 1965 |
-
# # # # diff = ndiff(x.split(), y.split())
|
| 1966 |
-
# # # # return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
| 1967 |
-
|
| 1968 |
-
# # # # def perform_deduplication(
|
| 1969 |
-
# # # # deduplication_type,
|
| 1970 |
-
# # # # dataset1_name,
|
| 1971 |
-
# # # # dataset1_split,
|
| 1972 |
-
# # # # dataset1_text_column,
|
| 1973 |
-
# # # # dataset2_name="",
|
| 1974 |
-
# # # # dataset2_split="",
|
| 1975 |
-
# # # # dataset2_text_column="",
|
| 1976 |
-
# # # # threshold=0.8,
|
| 1977 |
-
# # # # progress=gr.Progress(track_tqdm=True)
|
| 1978 |
-
# # # # ):
|
| 1979 |
-
# # # # # Monkey-patch tqdm
|
| 1980 |
-
# # # # original_tqdm = tqdm.tqdm
|
| 1981 |
-
# # # # tqdm.tqdm = progress.tqdm
|
| 1982 |
-
# # # # sys.modules['tqdm'].tqdm = progress.tqdm
|
| 1983 |
-
# # # # sys.modules['tqdm.auto'].tqdm = progress.tqdm
|
| 1984 |
-
|
| 1985 |
-
# # # # try:
|
| 1986 |
-
# # # # # Convert threshold to float
|
| 1987 |
-
# # # # threshold = float(threshold)
|
| 1988 |
-
|
| 1989 |
-
# # # # if deduplication_type == "Single dataset":
|
| 1990 |
-
# # # # # Check if the dataset is the default one
|
| 1991 |
-
# # # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 1992 |
-
# # # # ds = ds_default1
|
| 1993 |
-
# # # # else:
|
| 1994 |
-
# # # # ds = load_dataset(dataset1_name, split=dataset1_split)
|
| 1995 |
-
|
| 1996 |
-
# # # # # Extract texts
|
| 1997 |
-
# # # # texts = [example[dataset1_text_column] for example in ds]
|
| 1998 |
-
|
| 1999 |
-
# # # # # Compute embeddings
|
| 2000 |
-
# # # # embedding_matrix = model.encode(texts, show_progressbar=True) # Enable internal progress bar
|
| 2001 |
-
|
| 2002 |
-
# # # # # Deduplicate
|
| 2003 |
-
# # # # deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
|
| 2004 |
-
|
| 2005 |
-
# # # # # Prepare the results
|
| 2006 |
-
# # # # num_duplicates = len(duplicate_to_original_mapping)
|
| 2007 |
-
# # # # num_total = len(texts)
|
| 2008 |
-
# # # # num_deduplicated = len(deduplicated_indices)
|
| 2009 |
-
|
| 2010 |
-
# # # # result_text = f"**Total documents:** {num_total}\n"
|
| 2011 |
-
# # # # result_text += f"**Number of duplicates found:** {num_duplicates}\n"
|
| 2012 |
-
# # # # result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
|
| 2013 |
-
|
| 2014 |
-
# # # # # Show deduplicated examples
|
| 2015 |
-
# # # # result_text += "**Examples of duplicates found:**\n\n"
|
| 2016 |
-
# # # # num_examples = min(5, num_duplicates)
|
| 2017 |
-
# # # # for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
|
| 2018 |
-
# # # # original_text = texts[original_idx]
|
| 2019 |
-
# # # # duplicate_text = texts[duplicate_idx]
|
| 2020 |
-
# # # # differences = display_word_differences(original_text, duplicate_text)
|
| 2021 |
-
# # # # result_text += f"**Original text:**\n{original_text}\n\n"
|
| 2022 |
-
# # # # result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
|
| 2023 |
-
# # # # result_text += f"**Differences:**\n{differences}\n"
|
| 2024 |
-
# # # # result_text += "-" * 50 + "\n\n"
|
| 2025 |
-
|
| 2026 |
-
# # # # return result_text
|
| 2027 |
-
|
| 2028 |
-
# # # # elif deduplication_type == "Cross-dataset":
|
| 2029 |
-
# # # # # Dataset 1
|
| 2030 |
-
# # # # if dataset1_name == default_dataset1_name and dataset1_split == default_dataset1_split:
|
| 2031 |
-
# # # # ds1 = ds_default1
|
| 2032 |
-
# # # # else:
|
| 2033 |
-
# # # # ds1 = load_dataset(dataset1_name, split=dataset1_split)
|
| 2034 |
-
|
| 2035 |
-
# # # # # Dataset 2
|
| 2036 |
-
# # # # if dataset2_name == default_dataset2_name and dataset2_split == default_dataset2_split:
|
| 2037 |
-
# # # # ds2 = ds_default2
|
| 2038 |
-
# # # # else:
|
| 2039 |
-
# # # # ds2 = load_dataset(dataset2_name, split=dataset2_split)
|
| 2040 |
-
|
| 2041 |
-
# # # # # Extract texts
|
| 2042 |
-
# # # # texts1 = [example[dataset1_text_column] for example in ds1]
|
| 2043 |
-
# # # # texts2 = [example[dataset2_text_column] for example in ds2]
|
| 2044 |
-
|
| 2045 |
-
# # # # # Compute embeddings
|
| 2046 |
-
# # # # embedding_matrix1 = model.encode(texts1, show_progressbar=True) # Enable internal progress bar
|
| 2047 |
-
# # # # embedding_matrix2 = model.encode(texts2, show_progressbar=True) # Enable internal progress bar
|
| 2048 |
-
|
| 2049 |
-
# # # # # Deduplicate across datasets
|
| 2050 |
-
# # # # duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
|
| 2051 |
-
|
| 2052 |
-
# # # # num_duplicates = len(duplicate_indices_in_ds2)
|
| 2053 |
-
# # # # num_total_ds2 = len(texts2)
|
| 2054 |
-
# # # # num_unique_ds2 = num_total_ds2 - num_duplicates
|
| 2055 |
-
|
| 2056 |
-
# # # # result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
|
| 2057 |
-
# # # # result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
|
| 2058 |
-
# # # # result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
|
| 2059 |
-
|
| 2060 |
-
# # # # # Show deduplicated examples
|
| 2061 |
-
# # # # result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
|
| 2062 |
-
# # # # num_examples = min(5, num_duplicates)
|
| 2063 |
-
# # # # for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
|
| 2064 |
-
# # # # original_idx = duplicate_to_original_mapping[duplicate_idx]
|
| 2065 |
-
# # # # original_text = texts1[original_idx]
|
| 2066 |
-
# # # # duplicate_text = texts2[duplicate_idx]
|
| 2067 |
-
# # # # differences = display_word_differences(original_text, duplicate_text)
|
| 2068 |
-
# # # # result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
|
| 2069 |
-
# # # # result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
|
| 2070 |
-
# # # # result_text += f"**Differences:**\n{differences}\n"
|
| 2071 |
-
# # # # result_text += "-" * 50 + "\n\n"
|
| 2072 |
-
|
| 2073 |
-
# # # # return result_text
|
| 2074 |
-
|
| 2075 |
-
# # # # finally:
|
| 2076 |
-
# # # # # Restore original tqdm
|
| 2077 |
-
# # # # tqdm.tqdm = original_tqdm
|
| 2078 |
-
# # # # sys.modules['tqdm'].tqdm = original_tqdm
|
| 2079 |
-
# # # # sys.modules['tqdm.auto'].tqdm = original_tqdm
|
| 2080 |
-
|
| 2081 |
-
# # # # with gr.Blocks() as demo:
|
| 2082 |
-
# # # # gr.Markdown("# Semantic Deduplication")
|
| 2083 |
-
|
| 2084 |
-
# # # # deduplication_type = gr.Radio(
|
| 2085 |
-
# # # # choices=["Single dataset", "Cross-dataset"],
|
| 2086 |
-
# # # # label="Deduplication Type",
|
| 2087 |
-
# # # # value="Single dataset"
|
| 2088 |
-
# # # # )
|
| 2089 |
-
|
| 2090 |
-
# # # # with gr.Row():
|
| 2091 |
-
# # # # dataset1_name = gr.Textbox(value="ag_news", label="Dataset 1 Name")
|
| 2092 |
-
# # # # dataset1_split = gr.Textbox(value="train", label="Dataset 1 Split")
|
| 2093 |
-
# # # # dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 2094 |
-
|
| 2095 |
-
# # # # dataset2_inputs = gr.Column(visible=False)
|
| 2096 |
-
# # # # with dataset2_inputs:
|
| 2097 |
-
# # # # gr.Markdown("### Dataset 2")
|
| 2098 |
-
# # # # with gr.Row():
|
| 2099 |
-
# # # # dataset2_name = gr.Textbox(value="ag_news", label="Dataset 2 Name")
|
| 2100 |
-
# # # # dataset2_split = gr.Textbox(value="test", label="Dataset 2 Split")
|
| 2101 |
-
# # # # dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
|
| 2102 |
-
|
| 2103 |
-
# # # # threshold = gr.Slider(
|
| 2104 |
-
# # # # minimum=0.0,
|
| 2105 |
-
# # # # maximum=1.0,
|
| 2106 |
-
# # # # value=0.8,
|
| 2107 |
-
# # # # label="Similarity Threshold"
|
| 2108 |
-
# # # # )
|
| 2109 |
-
|
| 2110 |
-
# # # # compute_button = gr.Button("Compute")
|
| 2111 |
-
|
| 2112 |
-
# # # # output = gr.Markdown()
|
| 2113 |
-
|
| 2114 |
-
# # # # # Function to update the visibility of dataset2_inputs
|
| 2115 |
-
# # # # def update_visibility(deduplication_type_value):
|
| 2116 |
-
# # # # if deduplication_type_value == "Cross-dataset":
|
| 2117 |
-
# # # # return gr.update(visible=True)
|
| 2118 |
-
# # # # else:
|
| 2119 |
-
# # # # return gr.update(visible=False)
|
| 2120 |
-
|
| 2121 |
-
# # # # deduplication_type.change(
|
| 2122 |
-
# # # # update_visibility,
|
| 2123 |
-
# # # # inputs=deduplication_type,
|
| 2124 |
-
# # # # outputs=dataset2_inputs
|
| 2125 |
-
# # # # )
|
| 2126 |
-
|
| 2127 |
-
# # # # compute_button.click(
|
| 2128 |
-
# # # # fn=perform_deduplication,
|
| 2129 |
-
# # # # inputs=[
|
| 2130 |
-
# # # # deduplication_type,
|
| 2131 |
-
# # # # dataset1_name,
|
| 2132 |
-
# # # # dataset1_split,
|
| 2133 |
-
# # # # dataset1_text_column,
|
| 2134 |
-
# # # # dataset2_name,
|
| 2135 |
-
# # # # dataset2_split,
|
| 2136 |
-
# # # # dataset2_text_column,
|
| 2137 |
-
# # # # threshold
|
| 2138 |
-
# # # # ],
|
| 2139 |
-
# # # # outputs=output
|
| 2140 |
-
# # # # )
|
| 2141 |
-
|
| 2142 |
-
# # # # demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
| 3 |
import numpy as np
|
|
|
|
| 26 |
for i in range(0, len(iterable), batch_size):
|
| 27 |
yield iterable[i:i + batch_size]
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def display_word_differences(x: str, y: str) -> str:
|
| 30 |
diff = ndiff(x.split(), y.split())
|
| 31 |
return " ".join([word for word in diff if word.startswith(('+', '-'))])
|
|
|
|
| 65 |
# Compute embeddings
|
| 66 |
status = "Computing embeddings for Dataset 1..."
|
| 67 |
yield status, ""
|
| 68 |
+
embeddings = []
|
| 69 |
+
batch_size = 64
|
| 70 |
+
total_batches = (len(texts) + batch_size - 1) // batch_size
|
| 71 |
+
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
|
| 72 |
+
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 73 |
+
embeddings.append(batch_embeddings)
|
| 74 |
+
# Update progress
|
| 75 |
+
progress((i + 1) / total_batches, desc="Computing embeddings for Dataset 1")
|
| 76 |
+
# Yield control back to Gradio
|
| 77 |
+
yield status, ""
|
| 78 |
+
embedding_matrix = np.concatenate(embeddings, axis=0)
|
| 79 |
|
| 80 |
# Deduplicate
|
| 81 |
status = "Deduplicating embeddings..."
|
|
|
|
| 142 |
# Compute embeddings for Dataset 1
|
| 143 |
status = "Computing embeddings for Dataset 1..."
|
| 144 |
yield status, ""
|
| 145 |
+
embeddings1 = []
|
| 146 |
+
batch_size = 64
|
| 147 |
+
total_batches1 = (len(texts1) + batch_size - 1) // batch_size
|
| 148 |
+
for i, batch_texts in enumerate(batch_iterable(texts1, batch_size)):
|
| 149 |
+
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 150 |
+
embeddings1.append(batch_embeddings)
|
| 151 |
+
# Update progress
|
| 152 |
+
progress((i + 1) / total_batches1, desc="Computing embeddings for Dataset 1")
|
| 153 |
+
# Yield control back to Gradio
|
| 154 |
+
yield status, ""
|
| 155 |
+
embedding_matrix1 = np.concatenate(embeddings1, axis=0)
|
| 156 |
|
| 157 |
# Compute embeddings for Dataset 2
|
| 158 |
status = "Computing embeddings for Dataset 2..."
|
| 159 |
yield status, ""
|
| 160 |
+
embeddings2 = []
|
| 161 |
+
total_batches2 = (len(texts2) + batch_size - 1) // batch_size
|
| 162 |
+
for i, batch_texts in enumerate(batch_iterable(texts2, batch_size)):
|
| 163 |
+
batch_embeddings = model.encode(batch_texts, show_progressbar=False)
|
| 164 |
+
embeddings2.append(batch_embeddings)
|
| 165 |
+
# Update progress
|
| 166 |
+
progress((i + 1) / total_batches2, desc="Computing embeddings for Dataset 2")
|
| 167 |
+
# Yield control back to Gradio
|
| 168 |
+
yield status, ""
|
| 169 |
+
embedding_matrix2 = np.concatenate(embeddings2, axis=0)
|
| 170 |
|
| 171 |
# Deduplicate across datasets
|
| 172 |
status = "Deduplicating embeddings across datasets..."
|
|
|
|
| 302 |
label="Similarity Threshold"
|
| 303 |
)
|
| 304 |
|
| 305 |
+
compute_button = gr.Button("Compute")
|
| 306 |
|
| 307 |
status_output = gr.Markdown()
|
| 308 |
result_output = gr.Markdown()
|
|
|
|
| 336 |
)
|
| 337 |
|
| 338 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|