Updates
Browse files
app.py
CHANGED
@@ -199,7 +199,7 @@ with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
|
199 |
""")
|
200 |
|
201 |
deduplication_type = gr.Radio(
|
202 |
-
choices=["Single dataset", "Cross-dataset"
|
203 |
label="Deduplication Type",
|
204 |
value="Cross-dataset", # Set "Cross-dataset" as the default value
|
205 |
)
|
@@ -218,7 +218,10 @@ with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
|
218 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
219 |
|
220 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
221 |
-
|
|
|
|
|
|
|
222 |
status_output = gr.Markdown(elem_id="status_output")
|
223 |
result_output = gr.Markdown()
|
224 |
|
@@ -448,7 +451,7 @@ demo.launch()
|
|
448 |
# deduplication_type = gr.Radio(
|
449 |
# choices=["Single dataset", "Cross-dataset"],
|
450 |
# label="Deduplication Type",
|
451 |
-
# value="
|
452 |
# )
|
453 |
|
454 |
# with gr.Row():
|
@@ -456,7 +459,7 @@ demo.launch()
|
|
456 |
# dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
457 |
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
458 |
|
459 |
-
# dataset2_inputs = gr.Column(visible=
|
460 |
# with dataset2_inputs:
|
461 |
# gr.Markdown("### Dataset 2")
|
462 |
# with gr.Row():
|
@@ -491,3 +494,250 @@ demo.launch()
|
|
491 |
|
492 |
|
493 |
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
""")
|
200 |
|
201 |
deduplication_type = gr.Radio(
|
202 |
+
choices=["Cross-dataset", "Single dataset"], # Swapped "Cross-dataset" to the left
|
203 |
label="Deduplication Type",
|
204 |
value="Cross-dataset", # Set "Cross-dataset" as the default value
|
205 |
)
|
|
|
218 |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
219 |
|
220 |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
221 |
+
|
222 |
+
with gr.Row(): # Placing the button in the same row for better alignment
|
223 |
+
compute_button = gr.Button("Deduplicate")
|
224 |
+
|
225 |
status_output = gr.Markdown(elem_id="status_output")
|
226 |
result_output = gr.Markdown()
|
227 |
|
|
|
451 |
# deduplication_type = gr.Radio(
|
452 |
# choices=["Single dataset", "Cross-dataset"],
|
453 |
# label="Deduplication Type",
|
454 |
+
# value="Cross-dataset", # Set "Cross-dataset" as the default value
|
455 |
# )
|
456 |
|
457 |
# with gr.Row():
|
|
|
459 |
# dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
460 |
# dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
461 |
|
462 |
+
# dataset2_inputs = gr.Column(visible=True) # Make dataset2_inputs visible by default
|
463 |
# with dataset2_inputs:
|
464 |
# gr.Markdown("### Dataset 2")
|
465 |
# with gr.Row():
|
|
|
494 |
|
495 |
|
496 |
# demo.launch()
|
497 |
+
|
498 |
+
# # import gradio as gr
|
499 |
+
# # from datasets import load_dataset
|
500 |
+
# # import numpy as np
|
501 |
+
# # from model2vec import StaticModel
|
502 |
+
# # from reach import Reach
|
503 |
+
# # from difflib import ndiff
|
504 |
+
|
505 |
+
# # # Load the model
|
506 |
+
# # model = StaticModel.from_pretrained("minishlab/M2V_base_output")
|
507 |
+
|
508 |
+
# # # Default parameters
|
509 |
+
# # default_dataset_name = "sst2"
|
510 |
+
# # default_dataset_split = "train"
|
511 |
+
# # default_text_column = "sentence"
|
512 |
+
# # default_threshold = 0.9
|
513 |
+
|
514 |
+
# # def deduplicate_embeddings(
|
515 |
+
# # embeddings_a: np.ndarray,
|
516 |
+
# # embeddings_b: np.ndarray = None,
|
517 |
+
# # threshold: float = 0.9,
|
518 |
+
# # batch_size: int = 1024,
|
519 |
+
# # progress=None
|
520 |
+
# # ) -> tuple[np.ndarray, dict[int, int]]:
|
521 |
+
# # """
|
522 |
+
# # Deduplicate embeddings within one dataset or across two datasets.
|
523 |
+
|
524 |
+
# # :param embeddings_a: Embeddings of Dataset 1.
|
525 |
+
# # :param embeddings_b: Optional, embeddings of Dataset 2.
|
526 |
+
# # :param threshold: Similarity threshold for deduplication.
|
527 |
+
# # :param batch_size: Batch size for similarity computation.
|
528 |
+
# # :param progress: Gradio progress tracker for feedback.
|
529 |
+
# # :return: Deduplicated indices and a mapping of removed indices to their original counterparts.
|
530 |
+
# # """
|
531 |
+
# # if embeddings_b is None:
|
532 |
+
# # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
533 |
+
# # duplicate_to_original = {}
|
534 |
+
# # results = reach.nearest_neighbor_threshold(
|
535 |
+
# # embeddings_a, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
536 |
+
# # )
|
537 |
+
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_a))):
|
538 |
+
# # for sim_idx, _ in similar_items:
|
539 |
+
# # sim_idx = int(sim_idx)
|
540 |
+
# # if sim_idx != i and sim_idx not in duplicate_to_original:
|
541 |
+
# # duplicate_to_original[sim_idx] = i
|
542 |
+
# # deduplicated_indices = set(range(len(embeddings_a))) - set(duplicate_to_original.keys())
|
543 |
+
# # return deduplicated_indices, duplicate_to_original
|
544 |
+
# # else:
|
545 |
+
# # reach = Reach(vectors=embeddings_a, items=[str(i) for i in range(len(embeddings_a))])
|
546 |
+
# # duplicate_indices_in_b = []
|
547 |
+
# # duplicate_to_original = {}
|
548 |
+
# # results = reach.nearest_neighbor_threshold(
|
549 |
+
# # embeddings_b, threshold=threshold, batch_size=batch_size, show_progressbar=False
|
550 |
+
# # )
|
551 |
+
# # for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates", total=len(embeddings_b))):
|
552 |
+
# # if similar_items:
|
553 |
+
# # duplicate_indices_in_b.append(i)
|
554 |
+
# # duplicate_to_original[i] = int(similar_items[0][0])
|
555 |
+
# # return duplicate_indices_in_b, duplicate_to_original
|
556 |
+
|
557 |
+
# # def display_word_differences(x: str, y: str) -> str:
|
558 |
+
# # """
|
559 |
+
# # Display the word-level differences between two texts, formatted to avoid
|
560 |
+
# # misinterpretation of Markdown syntax.
|
561 |
+
|
562 |
+
# # :param x: First text.
|
563 |
+
# # :param y: Second text.
|
564 |
+
# # :return: A string showing word-level differences, wrapped in a code block.
|
565 |
+
# # """
|
566 |
+
# # diff = ndiff(x.split(), y.split())
|
567 |
+
# # formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-")))
|
568 |
+
# # return f"```\n{formatted_diff}\n```"
|
569 |
+
|
570 |
+
# # def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]:
|
571 |
+
# # """
|
572 |
+
# # Load texts from a specified dataset and split.
|
573 |
+
|
574 |
+
# # :param dataset_name: Name of the dataset.
|
575 |
+
# # :param dataset_split: Split of the dataset (e.g., 'train', 'validation').
|
576 |
+
# # :param text_column: Name of the text column.
|
577 |
+
# # :return: A list of texts from the dataset.
|
578 |
+
# # """
|
579 |
+
# # ds = load_dataset(dataset_name, split=dataset_split)
|
580 |
+
# # return [example[text_column] for example in ds]
|
581 |
+
|
582 |
+
# # def perform_deduplication(
|
583 |
+
# # deduplication_type: str,
|
584 |
+
# # dataset1_name: str,
|
585 |
+
# # dataset1_split: str,
|
586 |
+
# # dataset1_text_column: str,
|
587 |
+
# # dataset2_name: str = "",
|
588 |
+
# # dataset2_split: str = "",
|
589 |
+
# # dataset2_text_column: str = "",
|
590 |
+
# # threshold: float = default_threshold,
|
591 |
+
# # progress: gr.Progress = gr.Progress(track_tqdm=True)
|
592 |
+
# # ):
|
593 |
+
# # """
|
594 |
+
# # Perform deduplication on one or two datasets based on the deduplication type.
|
595 |
+
|
596 |
+
# # :param deduplication_type: 'Single dataset' or 'Cross-dataset'.
|
597 |
+
# # :param dataset1_name: Name of the first dataset.
|
598 |
+
# # :param dataset1_split: Split of the first dataset.
|
599 |
+
# # :param dataset1_text_column: Text column of the first dataset.
|
600 |
+
# # :param dataset2_name: Optional, name of the second dataset (for cross-dataset deduplication).
|
601 |
+
# # :param dataset2_split: Optional, split of the second dataset.
|
602 |
+
# # :param dataset2_text_column: Optional, text column of the second dataset.
|
603 |
+
# # :param threshold: Similarity threshold for deduplication.
|
604 |
+
# # :param progress: Gradio progress tracker.
|
605 |
+
# # :return: Status updates and result text for the Gradio interface.
|
606 |
+
# # """
|
607 |
+
# # try:
|
608 |
+
# # threshold = float(threshold)
|
609 |
+
|
610 |
+
# # # Load and process Dataset 1
|
611 |
+
# # yield "Loading Dataset 1...", ""
|
612 |
+
# # texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column)
|
613 |
+
# # yield "Computing embeddings for Dataset 1...", ""
|
614 |
+
# # embeddings1 = model.encode(texts1, show_progressbar=True)
|
615 |
+
|
616 |
+
# # if deduplication_type == "Single dataset":
|
617 |
+
# # # Deduplicate within Dataset 1
|
618 |
+
# # yield "Deduplicating within Dataset 1...", ""
|
619 |
+
# # deduplicated_indices, duplicate_mapping = deduplicate_embeddings(
|
620 |
+
# # embeddings1, threshold=threshold, progress=progress
|
621 |
+
# # )
|
622 |
+
|
623 |
+
# # num_duplicates = len(duplicate_mapping)
|
624 |
+
# # result_text = (
|
625 |
+
# # f"**Total documents:** {len(texts1)}\n\n"
|
626 |
+
# # f"**Duplicates found:** {num_duplicates}\n\n"
|
627 |
+
# # f"**Unique documents after deduplication:** {len(deduplicated_indices)}\n\n"
|
628 |
+
# # )
|
629 |
+
|
630 |
+
# # if num_duplicates > 0:
|
631 |
+
# # result_text += "**Sample duplicates:**\n\n"
|
632 |
+
# # for dup_idx, orig_idx in list(duplicate_mapping.items())[:5]:
|
633 |
+
# # orig_text = texts1[orig_idx]
|
634 |
+
# # dup_text = texts1[dup_idx]
|
635 |
+
# # differences = display_word_differences(orig_text, dup_text)
|
636 |
+
# # result_text += (
|
637 |
+
# # f"**Original:**\n{orig_text}\n\n"
|
638 |
+
# # f"**Duplicate:**\n{dup_text}\n\n"
|
639 |
+
# # f"**Differences:**\n{differences}\n"
|
640 |
+
# # + "-" * 50 + "\n\n"
|
641 |
+
# # )
|
642 |
+
# # else:
|
643 |
+
# # result_text += "No duplicates found."
|
644 |
+
|
645 |
+
# # yield "Deduplication completed.", result_text
|
646 |
+
|
647 |
+
# # else:
|
648 |
+
# # # Load and process Dataset 2
|
649 |
+
# # yield "Loading Dataset 2...", ""
|
650 |
+
# # texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column)
|
651 |
+
# # yield "Computing embeddings for Dataset 2...", ""
|
652 |
+
# # embeddings2 = model.encode(texts2, show_progressbar=True)
|
653 |
+
|
654 |
+
# # # Deduplicate Dataset 2 against Dataset 1
|
655 |
+
# # yield "Deduplicating Dataset 2 against Dataset 1...", ""
|
656 |
+
# # duplicate_indices, duplicate_mapping = deduplicate_embeddings(
|
657 |
+
# # embeddings1, embeddings_b=embeddings2, threshold=threshold, progress=progress
|
658 |
+
# # )
|
659 |
+
|
660 |
+
# # num_duplicates = len(duplicate_indices)
|
661 |
+
# # result_text = (
|
662 |
+
# # f"**Total documents in {dataset2_name}/{dataset2_split}:** {len(texts2)}\n\n"
|
663 |
+
# # f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n"
|
664 |
+
# # f"**Unique documents after deduplication:** {len(texts2) - num_duplicates}\n\n"
|
665 |
+
# # )
|
666 |
+
|
667 |
+
# # if num_duplicates > 0:
|
668 |
+
# # result_text += "**Sample duplicates from Dataset 2:**\n\n"
|
669 |
+
# # for idx in duplicate_indices[:5]:
|
670 |
+
# # orig_text = texts1[duplicate_mapping[idx]]
|
671 |
+
# # dup_text = texts2[idx]
|
672 |
+
# # differences = display_word_differences(orig_text, dup_text)
|
673 |
+
# # result_text += (
|
674 |
+
# # f"**Original (Dataset 1):**\n{orig_text}\n\n"
|
675 |
+
# # f"**Duplicate (Dataset 2):**\n{dup_text}\n\n"
|
676 |
+
# # f"**Differences:**\n{differences}\n"
|
677 |
+
# # + "-" * 50 + "\n\n"
|
678 |
+
# # )
|
679 |
+
# # else:
|
680 |
+
# # result_text += "No duplicates found."
|
681 |
+
|
682 |
+
# # yield "Deduplication completed.", result_text
|
683 |
+
|
684 |
+
# # except Exception as e:
|
685 |
+
# # yield f"An error occurred: {e}", ""
|
686 |
+
# # raise e
|
687 |
+
|
688 |
+
# # # Gradio app with stop button support
|
689 |
+
# # with gr.Blocks(css="#status_output { height: 50px; overflow: auto; }") as demo:
|
690 |
+
# # gr.Markdown("# Semantic Deduplication")
|
691 |
+
# # gr.Markdown("""
|
692 |
+
# # This demo showcases semantic deduplication using Model2Vec for HuggingFace datasets.
|
693 |
+
# # It can be used to identify duplicate texts within a single dataset or across two datasets.
|
694 |
+
# # You can adjust the similarity threshold to control the strictness of the deduplication.\n
|
695 |
+
# # NOTE: this demo runs on a free CPU backend, so it may be slow for large datasets. For faster results, please run the code locally.
|
696 |
+
# # """)
|
697 |
+
|
698 |
+
# # deduplication_type = gr.Radio(
|
699 |
+
# # choices=["Single dataset", "Cross-dataset"],
|
700 |
+
# # label="Deduplication Type",
|
701 |
+
# # value="Single dataset",
|
702 |
+
# # )
|
703 |
+
|
704 |
+
# # with gr.Row():
|
705 |
+
# # dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name")
|
706 |
+
# # dataset1_split = gr.Textbox(value=default_dataset_split, label="Dataset 1 Split")
|
707 |
+
# # dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
708 |
+
|
709 |
+
# # dataset2_inputs = gr.Column(visible=False)
|
710 |
+
# # with dataset2_inputs:
|
711 |
+
# # gr.Markdown("### Dataset 2")
|
712 |
+
# # with gr.Row():
|
713 |
+
# # dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name")
|
714 |
+
# # dataset2_split = gr.Textbox(value=default_dataset_split, label="Dataset 2 Split")
|
715 |
+
# # dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")
|
716 |
+
|
717 |
+
# # threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold")
|
718 |
+
# # compute_button = gr.Button("Deduplicate")
|
719 |
+
# # status_output = gr.Markdown(elem_id="status_output")
|
720 |
+
# # result_output = gr.Markdown()
|
721 |
+
|
722 |
+
# # def update_visibility(choice: str):
|
723 |
+
# # return gr.update(visible=choice == "Cross-dataset")
|
724 |
+
|
725 |
+
# # deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs)
|
726 |
+
|
727 |
+
# # compute_button.click(
|
728 |
+
# # fn=perform_deduplication,
|
729 |
+
# # inputs=[
|
730 |
+
# # deduplication_type,
|
731 |
+
# # dataset1_name,
|
732 |
+
# # dataset1_split,
|
733 |
+
# # dataset1_text_column,
|
734 |
+
# # dataset2_name,
|
735 |
+
# # dataset2_split,
|
736 |
+
# # dataset2_text_column,
|
737 |
+
# # threshold,
|
738 |
+
# # ],
|
739 |
+
# # outputs=[status_output, result_output],
|
740 |
+
# # )
|
741 |
+
|
742 |
+
|
743 |
+
# # demo.launch()
|