File size: 5,943 Bytes
d5d675e
 
 
a43ee22
 
d5d675e
a43ee22
 
d5d675e
 
a43ee22
d5d675e
a43ee22
d5d675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5faeb60
a43ee22
d5d675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a43ee22
d5d675e
 
 
 
 
 
 
 
 
 
5faeb60
 
d5d675e
 
 
a43ee22
d5d675e
 
a43ee22
 
d5d675e
 
 
 
 
 
 
 
5faeb60
d5d675e
 
 
 
 
 
 
 
5faeb60
d5d675e
 
cdb6de6
d5d675e
 
 
cdb6de6
d5d675e
cdb6de6
d5d675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb6de6
d5d675e
 
 
 
 
 
 
 
 
 
cdb6de6
d5d675e
cdb6de6
d5d675e
 
cdb6de6
d5d675e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5faeb60
d5d675e
 
 
a43ee22
 
d5d675e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gc
import os

import gradio as gr

from llama_cpp import Llama


ALPACA_SYSTEM_PROMPT = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request'
ALPACA_SYSTEM_PROMPT_NO_INPUT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.'

DEFAULT_MODEL = 'Med-Alpaca-2-7b-chat.Q4_K_M'

model_paths = {
    'Med-Alpaca-2-7b-chat.Q2_K': {
        'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
        'filename': 'Med-Alpaca-2-7B-chat.Q2_K.gguf',
    },
    'Med-Alpaca-2-7b-chat.Q4_K_M': {
        'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
        'filename': 'Med-Alpaca-2-7B-chat.Q4_K_M.gguf',
    },
    'Med-Alpaca-2-7b-chat.Q6_K': {
        'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
        'filename': 'Med-Alpaca-2-7B-chat.Q6_K.gguf',
    },
    'Med-Alpaca-2-7b-chat.Q8_0': {
        'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
        'filename': 'Med-Alpaca-2-7B-chat.Q8_0.gguf',
    },
    'Med-Alpaca-2-7b-chat.F16': {
        'repo_id': 'minhnguyent546/Med-Alpaca-2-7b-chat-GGUF',
        'filename': 'Med-Alpaca-2-7B-chat.F16.gguf',
    },
}
model = None

def generate_alpaca_prompt(
    instruction: str,
    input: str | None = None,
    response: str = '',
) -> str:
    prompt = ''
    if input is not None and input and input.strip() != '<noinput>':
        prompt = (
            f'{ALPACA_SYSTEM_PROMPT}\n\n'
            f'### Instruction:\n'
            f'{instruction}\n\n'
            f'### Input:\n'
            f'{input}\n\n'
            f'### Response: '
            f'{response}'
        )
    else:
        prompt = (
            f'{ALPACA_SYSTEM_PROMPT_NO_INPUT}\n\n'
            f'### Instruction:\n'
            f'{instruction}\n\n'
            f'### Response: '
            f'{response}'
        )
    return prompt.strip()

def chat_completion(
    message,
    history,
    seed: int,
    max_new_tokens: int,
    temperature: float,
    repeatition_penalty: float,
    top_k: int,
    top_p: float,
):
    if model is None:
        reload_model(DEFAULT_MODEL)
    prompt = generate_alpaca_prompt(instruction=message)
    response_iterator = model(
        prompt,
        stream=True,
        seed=seed,
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repeat_penalty=repeatition_penalty,
    )
    partial_response = ''
    for token in response_iterator:
        partial_response += token['choices'][0]['text']
        yield partial_response

def reload_model(model_name: str):
    global model
    if 'model' in globals():
        del model
    gc.collect()
    model = Llama.from_pretrained(
        **model_paths[model_name],
        n_ctx=4096,
        n_threads=4,
        cache_dir='./.hf_cache'
    )

    app_title_mark = gr.Markdown(f"""<center><font size=18>{model_name}</center>""")
    chatbot = gr.Chatbot(
        type='messages',
        height=500,
        placeholder='<strong>Hi doctor, I have a headache, what should I do?</strong>',
        label=model_name,
        avatar_images=[None, 'https://raw.githubusercontent.com/minhnguyent546/medical-llama2/demo/assets/med_alpaca.png'],  # pyright: ignore[reportArgumentType]
    )
    return app_title_mark, chatbot

def main() -> None:
    with gr.Blocks(theme=gr.themes.Ocean()) as demo:
        app_title_mark = gr.Markdown(f"""<center><font size=18>{DEFAULT_MODEL}</center>""")

        model_options = list(model_paths.keys())

        with gr.Row():
            with gr.Column(scale=2):
                with gr.Row():
                    model_radio = gr.Radio(choices=model_options, label='Model', value=DEFAULT_MODEL)
                with gr.Row():
                    seed = gr.Number(value=998244353, label='Seed')
                    max_new_tokens = gr.Number(value=512, minimum=64, maximum=2048, label='Max new tokens')

                with gr.Row():
                    temperature = gr.Slider(0, 2, step=0.01, label='Temperature', value=0.6)
                    repeatition_penalty = gr.Slider(0.01, 5, step=0.05, label='Repetition penalty', value=1.1)

                with gr.Row():
                    top_k = gr.Slider(1, 100, step=1, label='Top k', value=40)
                    top_p = gr.Slider(0, 1, step=0.01, label='Top p', value=0.9)

            with gr.Column(scale=5):
                chatbot = gr.Chatbot(
                    type='messages',
                    height=500,
                    placeholder='<strong>Hi doctor, I have a headache, what should I do?</strong>',
                    label=DEFAULT_MODEL,
                    avatar_images=[None, 'https://raw.githubusercontent.com/minhnguyent546/medical-llama2/demo/assets/med_alpaca.png'],  # pyright: ignore[reportArgumentType]
                )
                textbox = gr.Textbox(
                    placeholder='Hi doctor, I have a headache, what should I do?',
                    container=False,
                    submit_btn=True,
                    stop_btn=True,
                )

                chat_interface = gr.ChatInterface(
                    chat_completion,
                    type='messages',
                    chatbot=chatbot,
                    textbox=textbox,
                    additional_inputs=[
                        seed,
                        max_new_tokens,
                        temperature,
                        repeatition_penalty,
                        top_k,
                        top_p,
                    ],
                )

        model_radio.change(reload_model, inputs=[model_radio], outputs=[app_title_mark, chatbot])

        demo.queue(api_open=False, default_concurrency_limit=20)
        demo.launch(max_threads=5, share=os.environ.get('GRADIO_SHARE', False))


if __name__ == '__main__':
    main()