Spaces:
Paused
Paused
Upload folder using huggingface_hub
Browse files- README.md +10 -2
- app.py +33 -4
- backend/pytorch.py +12 -0
- backend/tensorflow.py +101 -0
- packages.txt +1 -1
README.md
CHANGED
|
@@ -4,13 +4,13 @@ emoji: 📑
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
`title`: _string_
|
| 16 |
Display title for the Space
|
|
@@ -37,3 +37,11 @@ Path is relative to the root of the repository.
|
|
| 37 |
|
| 38 |
`pinned`: _boolean_
|
| 39 |
Whether the Space stays on top of your list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: pink
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
## Configuration
|
| 14 |
|
| 15 |
`title`: _string_
|
| 16 |
Display title for the Space
|
|
|
|
| 37 |
|
| 38 |
`pinned`: _boolean_
|
| 39 |
Whether the Space stays on top of your list.
|
| 40 |
+
|
| 41 |
+
## Run the demo locally
|
| 42 |
+
|
| 43 |
+
```bash
|
| 44 |
+
cd demo
|
| 45 |
+
pip install -r pt-requirements.txt
|
| 46 |
+
streamlit run app.py
|
| 47 |
+
```
|
app.py
CHANGED
|
@@ -7,14 +7,25 @@ import cv2
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import numpy as np
|
| 9 |
import streamlit as st
|
| 10 |
-
import torch
|
| 11 |
|
|
|
|
| 12 |
from doctr.io import DocumentFile
|
| 13 |
from doctr.utils.visualization import visualize_page
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
def main(det_archs, reco_archs):
|
|
@@ -51,6 +62,7 @@ def main(det_archs, reco_archs):
|
|
| 51 |
|
| 52 |
# Model selection
|
| 53 |
st.sidebar.title("Model selection")
|
|
|
|
| 54 |
det_arch = st.sidebar.selectbox("Text detection model", det_archs)
|
| 55 |
reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs)
|
| 56 |
|
|
@@ -60,12 +72,21 @@ def main(det_archs, reco_archs):
|
|
| 60 |
st.sidebar.title("Parameters")
|
| 61 |
assume_straight_pages = st.sidebar.checkbox("Assume straight pages", value=True)
|
| 62 |
st.sidebar.write("\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# Straighten pages
|
| 64 |
straighten_pages = st.sidebar.checkbox("Straighten pages", value=False)
|
| 65 |
st.sidebar.write("\n")
|
| 66 |
# Binarization threshold
|
| 67 |
bin_thresh = st.sidebar.slider("Binarization threshold", min_value=0.1, max_value=0.9, value=0.3, step=0.1)
|
| 68 |
st.sidebar.write("\n")
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
if st.sidebar.button("Analyze page"):
|
| 71 |
if uploaded_file is None:
|
|
@@ -74,7 +95,15 @@ def main(det_archs, reco_archs):
|
|
| 74 |
else:
|
| 75 |
with st.spinner("Loading model..."):
|
| 76 |
predictor = load_predictor(
|
| 77 |
-
det_arch,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
with st.spinner("Analyzing..."):
|
|
|
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import numpy as np
|
| 9 |
import streamlit as st
|
|
|
|
| 10 |
|
| 11 |
+
from doctr.file_utils import is_tf_available
|
| 12 |
from doctr.io import DocumentFile
|
| 13 |
from doctr.utils.visualization import visualize_page
|
| 14 |
|
| 15 |
+
if is_tf_available():
|
| 16 |
+
import tensorflow as tf
|
| 17 |
+
from backend.tensorflow import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor
|
| 18 |
|
| 19 |
+
if any(tf.config.experimental.list_physical_devices("gpu")):
|
| 20 |
+
forward_device = tf.device("/gpu:0")
|
| 21 |
+
else:
|
| 22 |
+
forward_device = tf.device("/cpu:0")
|
| 23 |
+
|
| 24 |
+
else:
|
| 25 |
+
import torch
|
| 26 |
+
from backend.pytorch import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor
|
| 27 |
+
|
| 28 |
+
forward_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
| 30 |
|
| 31 |
def main(det_archs, reco_archs):
|
|
|
|
| 62 |
|
| 63 |
# Model selection
|
| 64 |
st.sidebar.title("Model selection")
|
| 65 |
+
st.sidebar.markdown("**Backend**: " + ("TensorFlow" if is_tf_available() else "PyTorch"))
|
| 66 |
det_arch = st.sidebar.selectbox("Text detection model", det_archs)
|
| 67 |
reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs)
|
| 68 |
|
|
|
|
| 72 |
st.sidebar.title("Parameters")
|
| 73 |
assume_straight_pages = st.sidebar.checkbox("Assume straight pages", value=True)
|
| 74 |
st.sidebar.write("\n")
|
| 75 |
+
# Disable page orientation detection
|
| 76 |
+
disable_page_orientation = st.sidebar.checkbox("Disable page orientation detection", value=False)
|
| 77 |
+
st.sidebar.write("\n")
|
| 78 |
+
# Disable crop orientation detection
|
| 79 |
+
disable_crop_orientation = st.sidebar.checkbox("Disable crop orientation detection", value=False)
|
| 80 |
+
st.sidebar.write("\n")
|
| 81 |
# Straighten pages
|
| 82 |
straighten_pages = st.sidebar.checkbox("Straighten pages", value=False)
|
| 83 |
st.sidebar.write("\n")
|
| 84 |
# Binarization threshold
|
| 85 |
bin_thresh = st.sidebar.slider("Binarization threshold", min_value=0.1, max_value=0.9, value=0.3, step=0.1)
|
| 86 |
st.sidebar.write("\n")
|
| 87 |
+
# Box threshold
|
| 88 |
+
box_thresh = st.sidebar.slider("Box threshold", min_value=0.1, max_value=0.9, value=0.1, step=0.1)
|
| 89 |
+
st.sidebar.write("\n")
|
| 90 |
|
| 91 |
if st.sidebar.button("Analyze page"):
|
| 92 |
if uploaded_file is None:
|
|
|
|
| 95 |
else:
|
| 96 |
with st.spinner("Loading model..."):
|
| 97 |
predictor = load_predictor(
|
| 98 |
+
det_arch,
|
| 99 |
+
reco_arch,
|
| 100 |
+
assume_straight_pages,
|
| 101 |
+
straighten_pages,
|
| 102 |
+
disable_page_orientation,
|
| 103 |
+
disable_crop_orientation,
|
| 104 |
+
bin_thresh,
|
| 105 |
+
box_thresh,
|
| 106 |
+
forward_device,
|
| 107 |
)
|
| 108 |
|
| 109 |
with st.spinner("Analyzing..."):
|
backend/pytorch.py
CHANGED
|
@@ -10,6 +10,9 @@ from doctr.models import ocr_predictor
|
|
| 10 |
from doctr.models.predictor import OCRPredictor
|
| 11 |
|
| 12 |
DET_ARCHS = [
|
|
|
|
|
|
|
|
|
|
| 13 |
"db_resnet50",
|
| 14 |
"db_resnet34",
|
| 15 |
"db_mobilenet_v3_large",
|
|
@@ -34,7 +37,10 @@ def load_predictor(
|
|
| 34 |
reco_arch: str,
|
| 35 |
assume_straight_pages: bool,
|
| 36 |
straighten_pages: bool,
|
|
|
|
|
|
|
| 37 |
bin_thresh: float,
|
|
|
|
| 38 |
device: torch.device,
|
| 39 |
) -> OCRPredictor:
|
| 40 |
"""Load a predictor from doctr.models
|
|
@@ -45,7 +51,10 @@ def load_predictor(
|
|
| 45 |
reco_arch: recognition architecture
|
| 46 |
assume_straight_pages: whether to assume straight pages or not
|
| 47 |
straighten_pages: whether to straighten rotated pages or not
|
|
|
|
|
|
|
| 48 |
bin_thresh: binarization threshold for the segmentation map
|
|
|
|
| 49 |
device: torch.device, the device to load the predictor on
|
| 50 |
|
| 51 |
Returns:
|
|
@@ -60,8 +69,11 @@ def load_predictor(
|
|
| 60 |
straighten_pages=straighten_pages,
|
| 61 |
export_as_straight_boxes=straighten_pages,
|
| 62 |
detect_orientation=not assume_straight_pages,
|
|
|
|
|
|
|
| 63 |
).to(device)
|
| 64 |
predictor.det_predictor.model.postprocessor.bin_thresh = bin_thresh
|
|
|
|
| 65 |
return predictor
|
| 66 |
|
| 67 |
|
|
|
|
| 10 |
from doctr.models.predictor import OCRPredictor
|
| 11 |
|
| 12 |
DET_ARCHS = [
|
| 13 |
+
"fast_base",
|
| 14 |
+
"fast_small",
|
| 15 |
+
"fast_tiny",
|
| 16 |
"db_resnet50",
|
| 17 |
"db_resnet34",
|
| 18 |
"db_mobilenet_v3_large",
|
|
|
|
| 37 |
reco_arch: str,
|
| 38 |
assume_straight_pages: bool,
|
| 39 |
straighten_pages: bool,
|
| 40 |
+
disable_page_orientation: bool,
|
| 41 |
+
disable_crop_orientation: bool,
|
| 42 |
bin_thresh: float,
|
| 43 |
+
box_thresh: float,
|
| 44 |
device: torch.device,
|
| 45 |
) -> OCRPredictor:
|
| 46 |
"""Load a predictor from doctr.models
|
|
|
|
| 51 |
reco_arch: recognition architecture
|
| 52 |
assume_straight_pages: whether to assume straight pages or not
|
| 53 |
straighten_pages: whether to straighten rotated pages or not
|
| 54 |
+
disable_page_orientation: whether to disable page orientation or not
|
| 55 |
+
disable_crop_orientation: whether to disable crop orientation or not
|
| 56 |
bin_thresh: binarization threshold for the segmentation map
|
| 57 |
+
box_thresh: minimal objectness score to consider a box
|
| 58 |
device: torch.device, the device to load the predictor on
|
| 59 |
|
| 60 |
Returns:
|
|
|
|
| 69 |
straighten_pages=straighten_pages,
|
| 70 |
export_as_straight_boxes=straighten_pages,
|
| 71 |
detect_orientation=not assume_straight_pages,
|
| 72 |
+
disable_page_orientation=disable_page_orientation,
|
| 73 |
+
disable_crop_orientation=disable_crop_orientation,
|
| 74 |
).to(device)
|
| 75 |
predictor.det_predictor.model.postprocessor.bin_thresh = bin_thresh
|
| 76 |
+
predictor.det_predictor.model.postprocessor.box_thresh = box_thresh
|
| 77 |
return predictor
|
| 78 |
|
| 79 |
|
backend/tensorflow.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2021-2024, Mindee.
|
| 2 |
+
|
| 3 |
+
# This program is licensed under the Apache License 2.0.
|
| 4 |
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
|
| 9 |
+
from doctr.models import ocr_predictor
|
| 10 |
+
from doctr.models.predictor import OCRPredictor
|
| 11 |
+
|
| 12 |
+
DET_ARCHS = [
|
| 13 |
+
"fast_base",
|
| 14 |
+
"fast_small",
|
| 15 |
+
"fast_tiny",
|
| 16 |
+
"db_resnet50",
|
| 17 |
+
"db_mobilenet_v3_large",
|
| 18 |
+
"linknet_resnet18",
|
| 19 |
+
"linknet_resnet34",
|
| 20 |
+
"linknet_resnet50",
|
| 21 |
+
]
|
| 22 |
+
RECO_ARCHS = [
|
| 23 |
+
"crnn_vgg16_bn",
|
| 24 |
+
"crnn_mobilenet_v3_small",
|
| 25 |
+
"crnn_mobilenet_v3_large",
|
| 26 |
+
"master",
|
| 27 |
+
"sar_resnet31",
|
| 28 |
+
"vitstr_small",
|
| 29 |
+
"vitstr_base",
|
| 30 |
+
"parseq",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def load_predictor(
|
| 35 |
+
det_arch: str,
|
| 36 |
+
reco_arch: str,
|
| 37 |
+
assume_straight_pages: bool,
|
| 38 |
+
straighten_pages: bool,
|
| 39 |
+
disable_page_orientation: bool,
|
| 40 |
+
disable_crop_orientation: bool,
|
| 41 |
+
bin_thresh: float,
|
| 42 |
+
box_thresh: float,
|
| 43 |
+
device: tf.device,
|
| 44 |
+
) -> OCRPredictor:
|
| 45 |
+
"""Load a predictor from doctr.models
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
----
|
| 49 |
+
det_arch: detection architecture
|
| 50 |
+
reco_arch: recognition architecture
|
| 51 |
+
assume_straight_pages: whether to assume straight pages or not
|
| 52 |
+
straighten_pages: whether to straighten rotated pages or not
|
| 53 |
+
disable_page_orientation: whether to disable page orientation or not
|
| 54 |
+
disable_crop_orientation: whether to disable crop orientation or not
|
| 55 |
+
bin_thresh: binarization threshold for the segmentation map
|
| 56 |
+
box_thresh: threshold for the detection boxes
|
| 57 |
+
device: tf.device, the device to load the predictor on
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
-------
|
| 61 |
+
instance of OCRPredictor
|
| 62 |
+
"""
|
| 63 |
+
with device:
|
| 64 |
+
predictor = ocr_predictor(
|
| 65 |
+
det_arch,
|
| 66 |
+
reco_arch,
|
| 67 |
+
pretrained=True,
|
| 68 |
+
assume_straight_pages=assume_straight_pages,
|
| 69 |
+
straighten_pages=straighten_pages,
|
| 70 |
+
export_as_straight_boxes=straighten_pages,
|
| 71 |
+
detect_orientation=not assume_straight_pages,
|
| 72 |
+
disable_page_orientation=disable_page_orientation,
|
| 73 |
+
disable_crop_orientation=disable_crop_orientation,
|
| 74 |
+
)
|
| 75 |
+
predictor.det_predictor.model.postprocessor.bin_thresh = bin_thresh
|
| 76 |
+
predictor.det_predictor.model.postprocessor.box_thresh = box_thresh
|
| 77 |
+
return predictor
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def forward_image(predictor: OCRPredictor, image: np.ndarray, device: tf.device) -> np.ndarray:
|
| 81 |
+
"""Forward an image through the predictor
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
----
|
| 85 |
+
predictor: instance of OCRPredictor
|
| 86 |
+
image: image to process as numpy array
|
| 87 |
+
device: tf.device, the device to process the image on
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
-------
|
| 91 |
+
segmentation map
|
| 92 |
+
"""
|
| 93 |
+
with device:
|
| 94 |
+
processed_batches = predictor.det_predictor.pre_processor([image])
|
| 95 |
+
out = predictor.det_predictor.model(processed_batches[0], return_model_output=True)
|
| 96 |
+
seg_map = out["out_map"]
|
| 97 |
+
|
| 98 |
+
with tf.device("/cpu:0"):
|
| 99 |
+
seg_map = tf.identity(seg_map).numpy()
|
| 100 |
+
|
| 101 |
+
return seg_map
|
packages.txt
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
python3-opencv
|
|
|
|
| 1 |
+
python3-opencv
|