Spaces:
Runtime error
Runtime error
File size: 6,736 Bytes
7ec5667 ec81c7a 7ec5667 cff97d1 7ec5667 cff97d1 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 cff97d1 7ec5667 cff97d1 7ec5667 cff97d1 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 ec81c7a 7ec5667 cff97d1 7ec5667 cff97d1 7ec5667 cff97d1 7ec5667 cff97d1 7ec5667 cff97d1 ec81c7a 7ec5667 ec81c7a 7ec5667 cff97d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# import torch
# import torch.nn as nn
# import numpy as np
# import json
# import captioning.utils.opts as opts
# import captioning.models as models
# import captioning.utils.misc as utils
# import pytorch_lightning as pl
import gradio as gr
# from diffusers import LDMTextToImagePipeline
# # import PIL.Image
import random
# import os
# # Checkpoint class
# class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
# def on_keyboard_interrupt(self, trainer, pl_module):
# # Save model when keyboard interrupt
# filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
# self._save_model(filepath)
# device = 'cpu' #@param ["cuda", "cpu"] {allow-input: true}
# reward = 'clips_grammar'
# cfg = f'./configs/phase2/clipRN50_{reward}.yml'
# print("Loading cfg from", cfg)
# opt = opts.parse_opt(parse=False, cfg=cfg)
# import gdown
# url = "https://drive.google.com/drive/folders/1nSX9aS7pPK4-OTHYtsUD_uEkwIQVIV7W"
# gdown.download_folder(url, quiet=True, use_cookies=False, output="save/")
# url = "https://drive.google.com/uc?id=1HNRE1MYO9wxmtMHLC8zURraoNFu157Dp"
# gdown.download(url, quiet=True, use_cookies=False, output="data/")
# dict_json = json.load(open('./data/cocotalk.json'))
# print(dict_json.keys())
# ix_to_word = dict_json['ix_to_word']
# vocab_size = len(ix_to_word)
# print('vocab size:', vocab_size)
# seq_length = 1
# opt.vocab_size = vocab_size
# opt.seq_length = seq_length
# opt.batch_size = 1
# opt.vocab = ix_to_word
# model = models.setup(opt)
# del opt.vocab
# ckpt_path = opt.checkpoint_path + '-last.ckpt'
# print("Loading checkpoint from", ckpt_path)
# raw_state_dict = torch.load(
# ckpt_path,
# map_location=device)
# strict = True
# state_dict = raw_state_dict['state_dict']
# if '_vocab' in state_dict:
# model.vocab = utils.deserialize(state_dict['_vocab'])
# del state_dict['_vocab']
# elif strict:
# raise KeyError
# if '_opt' in state_dict:
# saved_model_opt = utils.deserialize(state_dict['_opt'])
# del state_dict['_opt']
# # Make sure the saved opt is compatible with the curren topt
# need_be_same = ["caption_model",
# "rnn_type", "rnn_size", "num_layers"]
# for checkme in need_be_same:
# if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
# getattr(opt, checkme) in ['updown', 'topdown']:
# continue
# assert getattr(saved_model_opt, checkme) == getattr(
# opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
# elif strict:
# raise KeyError
# res = model.load_state_dict(state_dict, strict)
# print(res)
# model = model.to(device)
# model.eval();
# import clip
# from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
# from PIL import Image
# from timm.models.vision_transformer import resize_pos_embed
# clip_model, clip_transform = clip.load("RN50", jit=False, device=device)
# preprocess = Compose([
# Resize((448, 448), interpolation=Image.BICUBIC),
# CenterCrop((448, 448)),
# ToTensor()
# ])
# image_mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073]).to(device).reshape(3, 1, 1)
# image_std = torch.Tensor([0.26862954, 0.26130258, 0.27577711]).to(device).reshape(3, 1, 1)
# num_patches = 196 #600 * 1000 // 32 // 32
# pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, clip_model.visual.attnpool.positional_embedding.shape[-1], device=device),)
# pos_embed.weight = resize_pos_embed(clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed)
# clip_model.visual.attnpool.positional_embedding = pos_embed
# # End below
# print('Loading the model: CompVis/ldm-text2im-large-256')
# ldm_pipeline = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
# def generate_image_from_text(prompt, steps=100, seed=42, guidance_scale=6.0):
# print('RUN: generate_image_from_text')
# torch.cuda.empty_cache()
# generator = torch.manual_seed(seed)
# images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=guidance_scale)["sample"]
# return images[0]
# def generate_text_from_image(img):
# print('RUN: generate_text_from_image')
# with torch.no_grad():
# image = preprocess(img)
# image = torch.tensor(np.stack([image])).to(device)
# image -= image_mean
# image /= image_std
# tmp_att, tmp_fc = clip_model.encode_image(image)
# tmp_att = tmp_att[0].permute(1, 2, 0)
# tmp_fc = tmp_fc[0]
# att_feat = tmp_att
# fc_feat = tmp_fc
# # Inference configurations
# eval_kwargs = {}
# eval_kwargs.update(vars(opt))
# verbose = eval_kwargs.get('verbose', True)
# verbose_beam = eval_kwargs.get('verbose_beam', 0)
# verbose_loss = eval_kwargs.get('verbose_loss', 1)
# # dataset = eval_kwargs.get('dataset', 'coco')
# beam_size = eval_kwargs.get('beam_size', 1)
# sample_n = eval_kwargs.get('sample_n', 1)
# remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
# with torch.no_grad():
# fc_feats = torch.zeros((1,0)).to(device)
# att_feats = att_feat.view(1, 196, 2048).float().to(device)
# att_masks = None
# # forward the model to also get generated samples for each image
# # Only leave one feature for each image, in case duplicate sample
# tmp_eval_kwargs = eval_kwargs.copy()
# tmp_eval_kwargs.update({'sample_n': 1})
# seq, seq_logprobs = model(
# fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
# seq = seq.data
# sents = utils.decode_sequence(model.vocab, seq)
# return sents[0]
# def generate_drawing_from_image(img, steps=100, seed=42, guidance_scale=6.0):
# print('RUN: generate_drawing_from_image')
# caption = generate_text_from_image(img)
# gen_image = generate_image_from_text(caption, steps=steps, seed=seed, guidance_scale=guidance_scale)
# return gen_image
random_seed = random.randint(0, 2147483647)
def test_fn(**kwargs):
return None
gr.Interface(
# generate_drawing_from_image,
test_fn,
inputs=[
gr.Image(type="pil"),
gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
],
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
css="#output_image{width: 256px}",
).launch()
|