Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
4 |
+
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
6 |
+
"prithivida/parrot_paraphraser_on_T5", use_auth_token=os.environ["AUTH_TOKEN"])
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
8 |
+
"prithivida/parrot_paraphraser_on_T5", use_auth_token=os.environ["AUTH_TOKEN"])
|
9 |
+
|
10 |
+
pln_es_to_en = pipeline('translation_es_to_en',
|
11 |
+
model=AutoModelForSeq2SeqLM.from_pretrained(
|
12 |
+
'Helsinki-NLP/opus-mt-es-en'),
|
13 |
+
tokenizer=AutoTokenizer.from_pretrained(
|
14 |
+
'Helsinki-NLP/opus-mt-es-en')
|
15 |
+
)
|
16 |
+
|
17 |
+
pln_en_to_es = pipeline('translation_en_to_es',
|
18 |
+
model=AutoModelForSeq2SeqLM.from_pretrained(
|
19 |
+
'Helsinki-NLP/opus-mt-en-es'),
|
20 |
+
tokenizer=AutoTokenizer.from_pretrained(
|
21 |
+
'Helsinki-NLP/opus-mt-en-es')
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def paraphrase(sentence: str, lang: str, count: str):
|
26 |
+
p_count = int(count)
|
27 |
+
if p_count <= 0 or len(sentence.strip()) == 0:
|
28 |
+
return {'result': []}
|
29 |
+
sentence_input = sentence
|
30 |
+
if lang == 'ES':
|
31 |
+
sentence_input = pln_es_to_en(sentence_input)[0]['translation_text']
|
32 |
+
text = f"paraphrase: {sentence_input} </s>"
|
33 |
+
encoding = tokenizer.encode_plus(text, padding=True, return_tensors="pt")
|
34 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
35 |
+
outputs = model.generate(
|
36 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
37 |
+
max_length=512, # 256,
|
38 |
+
do_sample=True,
|
39 |
+
top_k=120,
|
40 |
+
top_p=0.95,
|
41 |
+
early_stopping=True,
|
42 |
+
num_return_sequences=p_count
|
43 |
+
)
|
44 |
+
res = []
|
45 |
+
for output in outputs:
|
46 |
+
line = tokenizer.decode(
|
47 |
+
output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
48 |
+
res.append(line)
|
49 |
+
if lang == 'EN':
|
50 |
+
return {'result': res}
|
51 |
+
else:
|
52 |
+
res_es = [pln_en_to_es(x)[0]['translation_text']
|
53 |
+
for x in res]
|
54 |
+
return {'result': res_es}
|
55 |
+
|
56 |
+
|
57 |
+
iface = gr.Interface(fn=paraphrase,
|
58 |
+
inputs=[
|
59 |
+
gr.inputs.Textbox(
|
60 |
+
lines=2, placeholder=None, label='Sentence'),
|
61 |
+
gr.inputs.Dropdown(
|
62 |
+
['ES', 'EN'], type="value", label='Language'),
|
63 |
+
gr.inputs.Number(
|
64 |
+
default=3, label='Paraphrases count'),
|
65 |
+
],
|
66 |
+
outputs=[gr.outputs.JSON(label=None)])
|
67 |
+
iface.launch()
|