import time import os import PIL import gradio as gr import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline from diffusers import StableDiffusionPipeline READ_TOKEN = os.environ.get('HF_ACCESS_TOKEN', None) model_id = "runwayml/stable-diffusion-v1-5" # model_id = "CompVis/stable-diffusion-v1-4" has_cuda = torch.cuda.is_available() if has_cuda: pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN) device = "cuda" else: pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=READ_TOKEN) device = "cpu" pipe.to(device) def safety_checker(images, clip_input): return images, False pipe.safety_checker = safety_checker SAVED_CHECKPOINT = 'mikegarts/distilgpt2-lotr' model = AutoModelForCausalLM.from_pretrained(SAVED_CHECKPOINT) tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT) summarizer = pipeline("summarization") ####################################################### def break_until_dot(txt): return txt.rsplit('.', 1)[0] + '.' def generate(prompt): input_context = prompt input_ids = tokenizer.encode(input_context, return_tensors="pt").to(model.device) outputs = model.generate( input_ids=input_ids, max_length=120, min_length=50, temperature=0.7, num_return_sequences=3, do_sample=True ) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) return break_until_dot(decoded) def generate_story(prompt): story = generate(prompt=prompt) summary = summarizer(story, min_length=5, max_length=15)[0]['summary_text'] summary = break_until_dot(summary) return story, summary, gr.update(visible=True) def on_change_event(app_state): if app_state and app_state['running'] and app_state['img']: img = app_state['img'] step = app_state['step'] label = f'Reconstructed image from the latent state at step {step}' print(f'Updating the image:! {app_state}') return gr.update(value=img, label=label) else: return gr.update() with gr.Blocks() as demo: def generate_image(prompt, inference_steps, app_state): app_state['running'] = True def callback(step, ts, latents): print (f'In Callback on {step} {ts} !') latents = 1 / 0.18215 * latents res = pipe.vae.decode(latents).sample res = (res / 2 + 0.5).clamp(0, 1) res = res.cpu().permute(0, 2, 3, 1).detach().numpy() res = pipe.numpy_to_pil(res)[0] app_state['img'] = res app_state['step'] = step print (f'In Callback on {app_state} Done!') prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration' img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=2) app_state['running'] = False return gr.update(value=img.images[0], label='Generated image') app_state = gr.State({'img': None, 'step':0, 'running':False}) title = gr.Markdown('## Lord of the rings app') description = gr.Markdown(f'#### A Lord of the rings inspired app that combines text and image generation.' f' The language modeling is done by fine tuning distilgpt2 on the LOTR trilogy.' f' The text2img model is {model_id}. The summarization is done using distilbart.') prompt = gr.Textbox(label="Your prompt", value="Frodo took the sword and") story = gr.Textbox(label="Your story") summary = gr.Textbox(label="Summary") bt_make_text = gr.Button("Generate text") bt_make_image = gr.Button(f"Generate an image (takes about 10-15 minutes on CPU).", visible=False) img_description = gr.Markdown('Image generation take some time' ' but here you can see the what is generated from the latent state of the diffuser every few steps.' ' Usually there is a significant improvement around step 15, that yields much better result') image = gr.Image(label='Illustration for your story', show_label=True) inference_steps = gr.Slider(5, 30, value=15, step=1, visible=True, label=f"Num inference steps (more steps makes a better image but takes more time)") bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image]) bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image) eventslider = gr.Slider(visible=False) dep = demo.load(on_change_event, app_state, image, every=10) eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=10, cancels=[dep]) if READ_TOKEN: demo.queue().launch() else: demo.queue().launch(share=True, debug=True)