Spaces:
Build error
Build error
File size: 4,180 Bytes
3d38118 52771bf 3d38118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
"""Gne pset from cmat. Find pairs for a given cmat.
tinybee.find_pairs.py with fixed estimator='dbscan' eps=eps, min_samples=min_samples
"""
from typing import List, Tuple, Union
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
import logzero
from logzero import logger
from radiobee.cmat2tset import cmat2tset
from radiobee.interpolate_pset import interpolate_pset
def gen_pset(
cmat1: Union[List[List[float]], np.ndarray, pd.DataFrame],
eps: float = 10,
min_samples: int = 6,
delta: float = 7,
verbose: Union[bool, int] = False,
# ) -> List[Tuple[int, int, Union[float, str]]]:
) -> List[Tuple[Union[float, str], Union[float, str], Union[float, str]]]:
"""Gen pset from cmat.
Find pairs for a given cmat.
Args:
cmat: correlation/similarity matrix
eps: min epsilon for DBSCAN (10)
min_samples: minimum # of samples for DBSCAN (6)
delta: tolerance (7)
Returns:
pairs + "" or metric (float)
dbscan_pairs' setup
if eps is None:
eps = src_len * .01
if eps < 3:
eps = 3
if min_samples is None:
min_samples = tgt_len / 100 * 0.5
if min_samples < 3:
min_samples = 3
def gen_eps_minsamples(src_len, tgt_len):
eps = src_len * .01
if eps < 3:
eps = 3
min_samples = tgt_len / 100 * 0.5
if min_samples < 3:
min_samples = 3
return {"eps": eps, "min_samples": min_samples}
"""
if isinstance(verbose, bool):
if verbose:
verbose = 10
else:
verbose = 20
logzero.loglevel(verbose)
# if isinstance(cmat, list):
cmat = np.array(cmat1)
src_len, tgt_len = cmat.shape
# tset = cmat2tset(cmat)
tset = cmat2tset(cmat).tolist()
logger.debug("tset: %s", tset)
# iset = gen_iset(cmat, verbose=verbose, estimator=estimator)
labels = DBSCAN(eps=eps, min_samples=min_samples).fit(tset).labels_
df_tset = pd.DataFrame(tset, columns=["x", "y", "cos"])
cset = df_tset[labels > -1].to_numpy()
# sort cset
_ = sorted(cset.tolist(), key=lambda x: x[0])
iset = interpolate_pset(_, tgt_len)
# *_, ymax = zip(*tset)
# ymax = list(ymax)
# low_ = np.min(ymax) - 1 # reset to minimum_value - 1
buff = [(-1, -1, ""), (tgt_len, src_len, "")]
# for _ in range(tgt_len):
for idx, tset_elm in enumerate(tset):
logger.debug("buff: %s", buff)
# postion max in ymax and insert in buff
# if with range given by iset+-delta and
# it's valid (do not exceed constraint
# by neighboring points
# argmax = int(np.argmax(ymax))
# logger.debug("=== %s,%s === %s", _, argmax, tset[_])
logger.debug("=== %s === %s", _, tset_elm)
# ymax[_] = low_
# elm = tset[argmax]
# elm0, *_ = elm
elm0, *_ = tset_elm
# position elm in buff
idx = -1 # for making pyright happy
for idx, loc in enumerate(buff):
if loc[0] > elm0:
break
else:
idx += 1 # last
# insert elm in for valid elm
# (within range inside two neighboring points)
# pos = int(tset[argmax][0])
pos = int(tset_elm[0])
logger.debug(" %s <=> %s ", tset_elm, iset[pos])
# if abs(tset[argmax][1] - iset[pos][1]) <= delta:
if abs(tset_elm[1] - iset[pos][1]) <= delta:
if tset_elm[1] > buff[idx - 1][1] and tset_elm[1] < buff[idx][1]:
buff.insert(idx, tset_elm)
logger.debug("idx: %s, tset_elm: %s", idx, tset_elm)
else:
logger.debug("\t***\t idx: %s, tset_elm: %s", idx, tset_elm)
_ = """
if abs(tset[loc][1] - iset[loc][1]) <= delta:
if tset[loc][1] > buff[idx][1] and tset[loc][1] < buff[idx + 1][1]:
buff.insert(idx + 1, tset[loc])
# """
# remove first and last entry in buff
buff.pop(0)
buff.pop()
# return [(1, 1, "")]
return [(int(elm0), int(elm1), elm2) for elm0, elm1, elm2 in buff]
|