Spaces:
Runtime error
Runtime error
File size: 7,038 Bytes
deeaab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
https://python.langchain.com/en/latest/getting_started/tutorials.html
"""
# pylint: disable=broad-exception-caught, unused-import
import os
import time
from pathlib import Path
# import click
# from typing import List
import gradio as gr
from charset_normalizer import detect
from langchain.docstore.document import Document
from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
from langchain.vectorstores import FAISS # FAISS instead of PineCone
from langchain.vectorstores import Chroma
from loguru import logger
from PyPDF2 import PdfReader # localgpt
from chromadb.config import Settings
# from utils import xlxs_to_csv
# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv
# load_dotenv()load_dotenv()
# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl='duckdb+parquet',
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False
)
def load_single_document(file_path: str|Path) -> Document:
"""ingest.py"""
# Loads a single document from a file path
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
if file_path.endswith(".txt"):
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return Document(page_content='', metadata={'source': file_path})
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return Document(page_content='', metadata={'source': file_path})
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
# elif file_path.endswith(".epub"): # for epub? epub2txt unstructured
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return ""
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return Document(page_content='', metadata={'source': file_path})
return loader.load()[0]
def get_pdf_text(pdf_docs):
"""docs-chat."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
"""docs-chat."""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""docs-chat."""
# embeddings = OpenAIEmbeddings()
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
logger.info(f"Loading {model_name}")
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
logger.info(
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
return vectorstore
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
file_paths = [file.name for file in files]
logger.info(file_paths)
res = ingest(file_paths)
# return [str(elm) for elm in res]
return file_paths
# return ingest(file_paths)
def ingest(file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"):
"""Gen Chroma db.
file_paths = ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
"""
if device_type in ['cpu', 'CPU']:
device='cpu'
elif device_type in ['mps', 'MPS']:
device='mps'
else:
device='cuda'
# Load documents and split in chunks
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
# documents = load_documents(SOURCE_DIRECTORY)
documents = []
for file_path in file_paths:
documents.append(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name,
model_kwargs={"device": device}
)
db = Chroma.from_documents(
texts, embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS
)
db.persist()
db = None
logger.info("Done ingest")
return [[Path(doc.metadata.get("source")).name, len(doc.page_content)] for doc in documents]
def main1():
"""Lump codes"""
with gr.Blocks() as demo:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo.launch()
def main():
"""Do blocks."""
with gr.Blocks() as demo:
name = gr.Textbox(label="Name")
greet_btn = gr.Button("Submit")
output = gr.Textbox(label="Output Box")
greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to upload files",
# file_types=["*.pdf", "*.epub", "*.docx"],
file_count="multiple"
)
upload_button.upload(upload_files, upload_button, file_output)
demo.launch()
if __name__ == "__main__":
main()
|