File size: 7,038 Bytes
deeaab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py

https://python.langchain.com/en/latest/getting_started/tutorials.html
"""
# pylint: disable=broad-exception-caught, unused-import
import os
import time
from pathlib import Path

# import click
# from typing import List

import gradio as gr
from charset_normalizer import detect
from langchain.docstore.document import Document
from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader

# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.text_splitter import (
    CharacterTextSplitter,
    RecursiveCharacterTextSplitter,
)
from langchain.vectorstores import FAISS  # FAISS instead of PineCone
from langchain.vectorstores import Chroma
from loguru import logger
from PyPDF2 import PdfReader  # localgpt
from chromadb.config import Settings

# from utils import xlxs_to_csv

# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv

# load_dotenv()load_dotenv()

# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")

ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"

# Define the Chroma settings
CHROMA_SETTINGS = Settings(
        chroma_db_impl='duckdb+parquet',
        persist_directory=PERSIST_DIRECTORY,
        anonymized_telemetry=False
)

def load_single_document(file_path: str|Path) -> Document:
    """ingest.py"""
    # Loads a single document from a file path
    # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
    encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
    if file_path.endswith(".txt"):
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Something is fishy, return empty str "
            )
            return Document(page_content='', metadata={'source': file_path})

        try:
            loader = TextLoader(file_path, encoding=encoding)
        except Exception as exc:
            logger.warning(f" {exc}, return dummy ")
            return Document(page_content='', metadata={'source': file_path})

    elif file_path.endswith(".pdf"):
        loader = PDFMinerLoader(file_path)
    elif file_path.endswith(".csv"):
        loader = CSVLoader(file_path)
    # elif file_path.endswith(".epub"): # for epub? epub2txt unstructured
    else:
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Likely binary files, return empty str "
            )
            return ""

        try:
            loader = TextLoader(file_path)
        except Exception as exc:
            logger.error(f" {exc}, returnning empty string")
            return Document(page_content='', metadata={'source': file_path})

    return loader.load()[0]


def get_pdf_text(pdf_docs):
    """docs-chat."""
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


def get_text_chunks(text):
    """docs-chat."""
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks):
    """docs-chat."""
    # embeddings = OpenAIEmbeddings()
    model_name = "hkunlp/instructor-xl"
    model_name = "hkunlp/instructor-large"
    model_name = "hkunlp/instructor-base"
    logger.info(f"Loading {model_name}")
    embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
    logger.info(f"Done loading {model_name}")

    logger.info(
        "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    logger.info(
        "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
    )

    return vectorstore


def greet(name):
    """Test."""
    logger.debug(f" name: [{name}] ")
    return "Hello " + name + "!!"


def upload_files(files):
    """Upload files."""
    file_paths = [file.name for file in files]
    logger.info(file_paths)

    res = ingest(file_paths)
    
    # return [str(elm) for elm in res]
    return file_paths

    # return ingest(file_paths)


def ingest(file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"):
    """Gen Chroma db.
    file_paths = ['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md', 'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
    """
    if device_type in ['cpu', 'CPU']:
        device='cpu'
    elif device_type in ['mps', 'MPS']:
        device='mps'
    else:
        device='cuda'

    #  Load documents and split in chunks
    # logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
    # documents = load_documents(SOURCE_DIRECTORY)

    documents = []
    for file_path in file_paths:
        documents.append(load_single_document(f"{file_path}"))

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)

    logger.info(f"Loaded {len(documents)} documents ")
    logger.info(f"Split into {len(texts)} chunks of text")

    # Create embeddings
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=model_name,
        model_kwargs={"device": device}
    )

    db = Chroma.from_documents(
        texts, embeddings,
        persist_directory=PERSIST_DIRECTORY,
        client_settings=CHROMA_SETTINGS
    )
    db.persist()
    db = None
    logger.info("Done ingest")

    return [[Path(doc.metadata.get("source")).name, len(doc.page_content)] for doc in documents]


def main1():
    """Lump codes"""
    with gr.Blocks() as demo:
        iface = gr.Interface(fn=greet, inputs="text", outputs="text")
        iface.launch()

    demo.launch()


def main():
    """Do blocks."""
    with gr.Blocks() as demo:
        name = gr.Textbox(label="Name")
        greet_btn = gr.Button("Submit")
        output = gr.Textbox(label="Output Box")
        greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")

        file_output = gr.File()
        upload_button = gr.UploadButton(
            "Click to upload files",
            # file_types=["*.pdf", "*.epub", "*.docx"],
            file_count="multiple"
        )
        upload_button.upload(upload_files, upload_button, file_output)

    demo.launch()


if __name__ == "__main__":
    main()