Spaces:
Runtime error
Runtime error
Commit
Β·
620af8b
1
Parent(s):
7b8b2a7
added example default text
Browse files- app.py +7 -5
- emotion_detection.py +34 -3
- keyword_extraction.py +64 -2
- named_entity_recognition.py +27 -0
- part_of_speech_tagging.py +17 -0
- sentiment_analysis.py +34 -3
app.py
CHANGED
|
@@ -44,6 +44,8 @@ pos_tagger = load_pos_model()
|
|
| 44 |
emotion_detector = load_emotion_model()
|
| 45 |
ner = load_ner_model()
|
| 46 |
|
|
|
|
|
|
|
| 47 |
with st.sidebar:
|
| 48 |
page = option_menu(menu_title='Menu',
|
| 49 |
menu_icon="robot",
|
|
@@ -134,7 +136,7 @@ elif page == "Sentiment Analysis":
|
|
| 134 |
"""
|
| 135 |
)
|
| 136 |
|
| 137 |
-
text = st.text_area("Paste text here", value=
|
| 138 |
|
| 139 |
if st.button('π₯ Run!'):
|
| 140 |
with st.spinner("Loading..."):
|
|
@@ -158,7 +160,7 @@ elif page == "Keyword Extraction":
|
|
| 158 |
"""
|
| 159 |
)
|
| 160 |
|
| 161 |
-
text = st.text_area("Paste text here", value=
|
| 162 |
|
| 163 |
max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)
|
| 164 |
|
|
@@ -191,7 +193,7 @@ elif page == "Part of Speech Tagging":
|
|
| 191 |
"""
|
| 192 |
)
|
| 193 |
|
| 194 |
-
text = st.text_area("Paste text here", value=
|
| 195 |
|
| 196 |
if st.button('π₯ Run!'):
|
| 197 |
with st.spinner("Loading..."):
|
|
@@ -213,7 +215,7 @@ elif page == "Emotion Detection":
|
|
| 213 |
"""
|
| 214 |
)
|
| 215 |
|
| 216 |
-
text = st.text_area("Paste text here", value=
|
| 217 |
|
| 218 |
if st.button('π₯ Run!'):
|
| 219 |
with st.spinner("Loading..."):
|
|
@@ -237,7 +239,7 @@ elif page == "Named Entity Recognition":
|
|
| 237 |
"""
|
| 238 |
)
|
| 239 |
|
| 240 |
-
text = st.text_area("Paste text here", value=
|
| 241 |
|
| 242 |
if st.button('π₯ Run!'):
|
| 243 |
with st.spinner("Loading..."):
|
|
|
|
| 44 |
emotion_detector = load_emotion_model()
|
| 45 |
ner = load_ner_model()
|
| 46 |
|
| 47 |
+
example_text = "This is example text that contains both names of organizations like Hugging Face and cities like New York, all while portraying an upbeat attitude."
|
| 48 |
+
|
| 49 |
with st.sidebar:
|
| 50 |
page = option_menu(menu_title='Menu',
|
| 51 |
menu_icon="robot",
|
|
|
|
| 136 |
"""
|
| 137 |
)
|
| 138 |
|
| 139 |
+
text = st.text_area("Paste text here", value=example_text)
|
| 140 |
|
| 141 |
if st.button('π₯ Run!'):
|
| 142 |
with st.spinner("Loading..."):
|
|
|
|
| 160 |
"""
|
| 161 |
)
|
| 162 |
|
| 163 |
+
text = st.text_area("Paste text here", value=example_text)
|
| 164 |
|
| 165 |
max_keywords = st.slider('# of Keywords Max Limit', min_value=1, max_value=10, value=5, step=1)
|
| 166 |
|
|
|
|
| 193 |
"""
|
| 194 |
)
|
| 195 |
|
| 196 |
+
text = st.text_area("Paste text here", value=example_text)
|
| 197 |
|
| 198 |
if st.button('π₯ Run!'):
|
| 199 |
with st.spinner("Loading..."):
|
|
|
|
| 215 |
"""
|
| 216 |
)
|
| 217 |
|
| 218 |
+
text = st.text_area("Paste text here", value=example_text)
|
| 219 |
|
| 220 |
if st.button('π₯ Run!'):
|
| 221 |
with st.spinner("Loading..."):
|
|
|
|
| 239 |
"""
|
| 240 |
)
|
| 241 |
|
| 242 |
+
text = st.text_area("Paste text here", value=example_text)
|
| 243 |
|
| 244 |
if st.button('π₯ Run!'):
|
| 245 |
with st.spinner("Loading..."):
|
emotion_detection.py
CHANGED
|
@@ -5,6 +5,13 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
|
| 7 |
class EmotionDetection:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def __init__(self):
|
| 9 |
hub_location = 'cardiffnlp/twitter-roberta-base-emotion'
|
| 10 |
self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
|
|
@@ -12,7 +19,15 @@ class EmotionDetection:
|
|
| 12 |
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
|
| 13 |
|
| 14 |
def justify(self, text):
|
| 15 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
word_attributions = self.explainer(text)
|
| 18 |
html = self.explainer.visualize("example.html")
|
|
@@ -20,7 +35,15 @@ class EmotionDetection:
|
|
| 20 |
return html
|
| 21 |
|
| 22 |
def classify(self, text):
|
| 23 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
| 26 |
outputs = self.model(**tokens)
|
|
@@ -32,7 +55,15 @@ class EmotionDetection:
|
|
| 32 |
return preds
|
| 33 |
|
| 34 |
def run(self, text):
|
| 35 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
preds = self.classify(text)
|
| 38 |
html = self.justify(text)
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class EmotionDetection:
|
| 8 |
+
""" This class is an example
|
| 9 |
+
|
| 10 |
+
Attributes:
|
| 11 |
+
class_attribute (str): (class attribute) The class attribute
|
| 12 |
+
instance_attribute (str): The instance attribute
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
def __init__(self):
|
| 16 |
hub_location = 'cardiffnlp/twitter-roberta-base-emotion'
|
| 17 |
self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
|
|
|
|
| 19 |
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
|
| 20 |
|
| 21 |
def justify(self, text):
|
| 22 |
+
"""
|
| 23 |
+
The function to add two Complex Numbers.
|
| 24 |
+
|
| 25 |
+
Parameters:
|
| 26 |
+
num (ComplexNumber): The complex number to be added.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
ComplexNumber: A complex number which contains the sum.
|
| 30 |
+
"""
|
| 31 |
|
| 32 |
word_attributions = self.explainer(text)
|
| 33 |
html = self.explainer.visualize("example.html")
|
|
|
|
| 35 |
return html
|
| 36 |
|
| 37 |
def classify(self, text):
|
| 38 |
+
"""
|
| 39 |
+
The function to add two Complex Numbers.
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
num (ComplexNumber): The complex number to be added.
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
ComplexNumber: A complex number which contains the sum.
|
| 46 |
+
"""
|
| 47 |
|
| 48 |
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
| 49 |
outputs = self.model(**tokens)
|
|
|
|
| 55 |
return preds
|
| 56 |
|
| 57 |
def run(self, text):
|
| 58 |
+
"""
|
| 59 |
+
The function to add two Complex Numbers.
|
| 60 |
+
|
| 61 |
+
Parameters:
|
| 62 |
+
num (ComplexNumber): The complex number to be added.
|
| 63 |
+
|
| 64 |
+
Returns:
|
| 65 |
+
ComplexNumber: A complex number which contains the sum.
|
| 66 |
+
"""
|
| 67 |
|
| 68 |
preds = self.classify(text)
|
| 69 |
html = self.justify(text)
|
keyword_extraction.py
CHANGED
|
@@ -6,11 +6,28 @@ import en_core_web_sm
|
|
| 6 |
|
| 7 |
|
| 8 |
class KeywordExtractor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def __init__(self):
|
| 10 |
self.nlp = en_core_web_sm.load()
|
| 11 |
self.nlp.add_pipe("textrank")
|
| 12 |
|
| 13 |
def get_keywords(self, text, max_keywords):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
doc = self.nlp(text)
|
| 15 |
|
| 16 |
kws = [i.text for i in doc._.phrases[:max_keywords]]
|
|
@@ -18,6 +35,16 @@ class KeywordExtractor:
|
|
| 18 |
return kws
|
| 19 |
|
| 20 |
def get_keyword_indicies(self, string_list, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
out = []
|
| 22 |
for s in string_list:
|
| 23 |
indicies = [[m.start(), m.end()] for m in re.finditer(re.escape(s), text)]
|
|
@@ -26,6 +53,16 @@ class KeywordExtractor:
|
|
| 26 |
return out
|
| 27 |
|
| 28 |
def merge_overlapping_indicies(self, indicies):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Sort the array on the basis of start values of intervals.
|
| 30 |
indicies.sort()
|
| 31 |
stack = []
|
|
@@ -41,6 +78,16 @@ class KeywordExtractor:
|
|
| 41 |
return stack
|
| 42 |
|
| 43 |
def merge_until_finished(self, indicies):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
len_indicies = 0
|
| 45 |
while True:
|
| 46 |
merged = self.merge_overlapping_indicies(indicies)
|
|
@@ -51,9 +98,15 @@ class KeywordExtractor:
|
|
| 51 |
len_indicies = len(merged)
|
| 52 |
|
| 53 |
def get_annotation(self, text, indicies, kws):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
arr = list(text)
|
| 59 |
for idx in sorted(indicies, reverse=True):
|
|
@@ -71,6 +124,15 @@ class KeywordExtractor:
|
|
| 71 |
return final_annotation
|
| 72 |
|
| 73 |
def generate(self, text, max_keywords):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
kws = self.get_keywords(text, max_keywords)
|
| 76 |
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class KeywordExtractor:
|
| 9 |
+
""" This class is an example
|
| 10 |
+
|
| 11 |
+
Attributes:
|
| 12 |
+
class_attribute (str): (class attribute) The class attribute
|
| 13 |
+
instance_attribute (str): The instance attribute
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
def __init__(self):
|
| 17 |
self.nlp = en_core_web_sm.load()
|
| 18 |
self.nlp.add_pipe("textrank")
|
| 19 |
|
| 20 |
def get_keywords(self, text, max_keywords):
|
| 21 |
+
"""
|
| 22 |
+
The function to add two Complex Numbers.
|
| 23 |
+
|
| 24 |
+
Parameters:
|
| 25 |
+
num (ComplexNumber): The complex number to be added.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
ComplexNumber: A complex number which contains the sum.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
doc = self.nlp(text)
|
| 32 |
|
| 33 |
kws = [i.text for i in doc._.phrases[:max_keywords]]
|
|
|
|
| 35 |
return kws
|
| 36 |
|
| 37 |
def get_keyword_indicies(self, string_list, text):
|
| 38 |
+
"""
|
| 39 |
+
The function to add two Complex Numbers.
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
num (ComplexNumber): The complex number to be added.
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
ComplexNumber: A complex number which contains the sum.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
out = []
|
| 49 |
for s in string_list:
|
| 50 |
indicies = [[m.start(), m.end()] for m in re.finditer(re.escape(s), text)]
|
|
|
|
| 53 |
return out
|
| 54 |
|
| 55 |
def merge_overlapping_indicies(self, indicies):
|
| 56 |
+
"""
|
| 57 |
+
The function to add two Complex Numbers.
|
| 58 |
+
|
| 59 |
+
Parameters:
|
| 60 |
+
num (ComplexNumber): The complex number to be added.
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
ComplexNumber: A complex number which contains the sum.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
# Sort the array on the basis of start values of intervals.
|
| 67 |
indicies.sort()
|
| 68 |
stack = []
|
|
|
|
| 78 |
return stack
|
| 79 |
|
| 80 |
def merge_until_finished(self, indicies):
|
| 81 |
+
"""
|
| 82 |
+
The function to add two Complex Numbers.
|
| 83 |
+
|
| 84 |
+
Parameters:
|
| 85 |
+
num (ComplexNumber): The complex number to be added.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
ComplexNumber: A complex number which contains the sum.
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
len_indicies = 0
|
| 92 |
while True:
|
| 93 |
merged = self.merge_overlapping_indicies(indicies)
|
|
|
|
| 98 |
len_indicies = len(merged)
|
| 99 |
|
| 100 |
def get_annotation(self, text, indicies, kws):
|
| 101 |
+
"""
|
| 102 |
+
The function to add two Complex Numbers.
|
| 103 |
+
|
| 104 |
+
Parameters:
|
| 105 |
+
num (ComplexNumber): The complex number to be added.
|
| 106 |
|
| 107 |
+
Returns:
|
| 108 |
+
ComplexNumber: A complex number which contains the sum.
|
| 109 |
+
"""
|
| 110 |
|
| 111 |
arr = list(text)
|
| 112 |
for idx in sorted(indicies, reverse=True):
|
|
|
|
| 124 |
return final_annotation
|
| 125 |
|
| 126 |
def generate(self, text, max_keywords):
|
| 127 |
+
"""
|
| 128 |
+
The function to add two Complex Numbers.
|
| 129 |
+
|
| 130 |
+
Parameters:
|
| 131 |
+
num (ComplexNumber): The complex number to be added.
|
| 132 |
+
|
| 133 |
+
Returns:
|
| 134 |
+
ComplexNumber: A complex number which contains the sum.
|
| 135 |
+
"""
|
| 136 |
|
| 137 |
kws = self.get_keywords(text, max_keywords)
|
| 138 |
|
named_entity_recognition.py
CHANGED
|
@@ -3,12 +3,29 @@ from transformers import pipeline
|
|
| 3 |
|
| 4 |
|
| 5 |
class NamedEntityRecognition:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def __init__(self):
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 8 |
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 9 |
self.nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
| 10 |
|
| 11 |
def get_annotation(self, preds, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
splits = [0]
|
| 13 |
entities = {}
|
| 14 |
for i in preds:
|
|
@@ -29,6 +46,16 @@ class NamedEntityRecognition:
|
|
| 29 |
return final_annotation
|
| 30 |
|
| 31 |
def classify(self, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
preds = self.nlp(text)
|
| 33 |
ner_annotation = self.get_annotation(preds, text)
|
| 34 |
return preds, ner_annotation
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
class NamedEntityRecognition:
|
| 6 |
+
""" This class is an example
|
| 7 |
+
|
| 8 |
+
Attributes:
|
| 9 |
+
class_attribute (str): (class attribute) The class attribute
|
| 10 |
+
instance_attribute (str): The instance attribute
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
def __init__(self):
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 15 |
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
| 16 |
self.nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
| 17 |
|
| 18 |
def get_annotation(self, preds, text):
|
| 19 |
+
"""
|
| 20 |
+
The function to add two Complex Numbers.
|
| 21 |
+
|
| 22 |
+
Parameters:
|
| 23 |
+
num (ComplexNumber): The complex number to be added.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
ComplexNumber: A complex number which contains the sum.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
splits = [0]
|
| 30 |
entities = {}
|
| 31 |
for i in preds:
|
|
|
|
| 46 |
return final_annotation
|
| 47 |
|
| 48 |
def classify(self, text):
|
| 49 |
+
"""
|
| 50 |
+
The function to add two Complex Numbers.
|
| 51 |
+
|
| 52 |
+
Parameters:
|
| 53 |
+
num (ComplexNumber): The complex number to be added.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
ComplexNumber: A complex number which contains the sum.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
preds = self.nlp(text)
|
| 60 |
ner_annotation = self.get_annotation(preds, text)
|
| 61 |
return preds, ner_annotation
|
part_of_speech_tagging.py
CHANGED
|
@@ -5,10 +5,27 @@ nltk.download('averaged_perceptron_tagger')
|
|
| 5 |
|
| 6 |
|
| 7 |
class POSTagging:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def __init__(self):
|
| 9 |
pass
|
| 10 |
|
| 11 |
def classify(self, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
text = word_tokenize(text)
|
| 13 |
preds = nltk.pos_tag(text)
|
| 14 |
return preds
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class POSTagging:
|
| 8 |
+
""" This class is an example
|
| 9 |
+
|
| 10 |
+
Attributes:
|
| 11 |
+
class_attribute (str): (class attribute) The class attribute
|
| 12 |
+
instance_attribute (str): The instance attribute
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
def __init__(self):
|
| 16 |
pass
|
| 17 |
|
| 18 |
def classify(self, text):
|
| 19 |
+
"""
|
| 20 |
+
The function to add two Complex Numbers.
|
| 21 |
+
|
| 22 |
+
Parameters:
|
| 23 |
+
num (ComplexNumber): The complex number to be added.
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
ComplexNumber: A complex number which contains the sum.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
text = word_tokenize(text)
|
| 30 |
preds = nltk.pos_tag(text)
|
| 31 |
return preds
|
sentiment_analysis.py
CHANGED
|
@@ -5,6 +5,13 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
|
| 7 |
class SentimentAnalysis:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
def __init__(self):
|
| 9 |
# Load Tokenizer & Model
|
| 10 |
hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
|
|
@@ -23,7 +30,15 @@ class SentimentAnalysis:
|
|
| 23 |
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
|
| 24 |
|
| 25 |
def justify(self, text):
|
| 26 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
word_attributions = self.explainer(text)
|
| 29 |
html = self.explainer.visualize("example.html")
|
|
@@ -31,7 +46,15 @@ class SentimentAnalysis:
|
|
| 31 |
return html
|
| 32 |
|
| 33 |
def classify(self, text):
|
| 34 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
| 37 |
outputs = self.model(**tokens)
|
|
@@ -42,7 +65,15 @@ class SentimentAnalysis:
|
|
| 42 |
return preds
|
| 43 |
|
| 44 |
def run(self, text):
|
| 45 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
preds = self.classify(text)
|
| 48 |
html = self.justify(text)
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
class SentimentAnalysis:
|
| 8 |
+
""" This class is an example
|
| 9 |
+
|
| 10 |
+
Attributes:
|
| 11 |
+
class_attribute (str): (class attribute) The class attribute
|
| 12 |
+
instance_attribute (str): The instance attribute
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
def __init__(self):
|
| 16 |
# Load Tokenizer & Model
|
| 17 |
hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
|
|
|
|
| 30 |
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
|
| 31 |
|
| 32 |
def justify(self, text):
|
| 33 |
+
"""
|
| 34 |
+
The function to add two Complex Numbers.
|
| 35 |
+
|
| 36 |
+
Parameters:
|
| 37 |
+
num (ComplexNumber): The complex number to be added.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
ComplexNumber: A complex number which contains the sum.
|
| 41 |
+
"""
|
| 42 |
|
| 43 |
word_attributions = self.explainer(text)
|
| 44 |
html = self.explainer.visualize("example.html")
|
|
|
|
| 46 |
return html
|
| 47 |
|
| 48 |
def classify(self, text):
|
| 49 |
+
"""
|
| 50 |
+
The function to add two Complex Numbers.
|
| 51 |
+
|
| 52 |
+
Parameters:
|
| 53 |
+
num (ComplexNumber): The complex number to be added.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
ComplexNumber: A complex number which contains the sum.
|
| 57 |
+
"""
|
| 58 |
|
| 59 |
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
| 60 |
outputs = self.model(**tokens)
|
|
|
|
| 65 |
return preds
|
| 66 |
|
| 67 |
def run(self, text):
|
| 68 |
+
"""
|
| 69 |
+
The function to add two Complex Numbers.
|
| 70 |
+
|
| 71 |
+
Parameters:
|
| 72 |
+
num (ComplexNumber): The complex number to be added.
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
ComplexNumber: A complex number which contains the sum.
|
| 76 |
+
"""
|
| 77 |
|
| 78 |
preds = self.classify(text)
|
| 79 |
html = self.justify(text)
|