Delete evaluate_gpt.py
Browse files- evaluate_gpt.py +0 -181
evaluate_gpt.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
# # -*- coding: utf-8 -*-
|
2 |
-
# """evaluate.ipynb
|
3 |
-
|
4 |
-
# Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
# Original file is located at
|
7 |
-
# https://colab.research.google.com/drive/1_WZN6_5mgwRgg484xzXMSwCXBQXfr8Vj
|
8 |
-
# """
|
9 |
-
|
10 |
-
# # -*- coding: utf-8 -*-
|
11 |
-
|
12 |
-
# """# code here"""
|
13 |
-
# print("**************OUTPUT FILE PATH UPDATED FOR SEED 42 hinglish ******************")
|
14 |
-
|
15 |
-
import numpy as np
|
16 |
-
import timeit
|
17 |
-
import torch
|
18 |
-
#from torch.utils.data import DataLoader, TensorDataset, RandomSampler
|
19 |
-
import json, argparse
|
20 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
import pandas as pd
|
22 |
-
from torch.utils.data import Dataset, DataLoader
|
23 |
-
import transformers
|
24 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
25 |
-
print('use transformers version = ',transformers.__version__) # make sure it is 2.6.0
|
26 |
-
|
27 |
-
|
28 |
-
def add_special_tokens(tokenizer):
|
29 |
-
""" Returns GPT2 tokenizer after adding separator and padding tokens """
|
30 |
-
#tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
31 |
-
special_tokens = {'bos_token':'<|startoftext|>','eos_token':'<|endoftext|>', 'pad_token':'<|pad|>','sep_token':'<|summarize|>'}
|
32 |
-
num_add_toks = tokenizer.add_special_tokens(special_tokens)
|
33 |
-
return tokenizer
|
34 |
-
|
35 |
-
|
36 |
-
class GPT21024Dataset(Dataset):
|
37 |
-
|
38 |
-
#def __init__(self, root_dir, ids_file, mode='train',length=None):
|
39 |
-
def __init__(self, text, ctext, tokenizer, source_len, summ_len):
|
40 |
-
self.tokenizer = add_special_tokens(tokenizer)
|
41 |
-
# self.data = dataframe
|
42 |
-
self.source_len = source_len
|
43 |
-
self.summ_len = summ_len
|
44 |
-
# self.text = self.data['summary-hinglish'] ## the summary
|
45 |
-
# self.ctext = self.data['dialogue-hinglish'] ## ctext is the article to be summarized
|
46 |
-
self.text = text ## the summary
|
47 |
-
self.ctext = ctext
|
48 |
-
|
49 |
-
|
50 |
-
def __len__(self):
|
51 |
-
return len(self.ctext)
|
52 |
-
#return self.len
|
53 |
-
|
54 |
-
def __getitem__(self,index):
|
55 |
-
|
56 |
-
##articles
|
57 |
-
ctext = str(self.ctext[index])
|
58 |
-
ctext = ' '.join(ctext.split())
|
59 |
-
|
60 |
-
##summaries
|
61 |
-
|
62 |
-
text = str(self.text[index])
|
63 |
-
text = ' '.join(text.split())
|
64 |
-
|
65 |
-
|
66 |
-
tok_data={}
|
67 |
-
tok_data['article']= ctext
|
68 |
-
tok_data['summary']= text
|
69 |
-
|
70 |
-
input_ids= '<|startoftext|>' + tok_data['article'] + '<|summarize|>'
|
71 |
-
summary= tok_data['summary']
|
72 |
-
|
73 |
-
content = self.tokenizer.encode(input_ids, max_length = 512, padding='max_length',truncation=True)
|
74 |
-
summary_target_ids= self.tokenizer.encode( summary, max_length = 512, padding='max_length',truncation=True)
|
75 |
-
|
76 |
-
#texts[:len(content)] = content
|
77 |
-
texts = torch.tensor(content)
|
78 |
-
summary_target_ids=torch.tensor(summary_target_ids)
|
79 |
-
sample = {'article': texts, 'actual_summary': summary_target_ids, 'sum_idx': len(self.tokenizer.encode(tok_data['article']))}
|
80 |
-
return sample
|
81 |
-
|
82 |
-
def gpt_eval(
|
83 |
-
verbose=True,
|
84 |
-
model_name_path=None,
|
85 |
-
src_txt=None,
|
86 |
-
tar_txt=None,
|
87 |
-
gen_path=None,
|
88 |
-
scor_path=None,
|
89 |
-
batch_size=4
|
90 |
-
):
|
91 |
-
"""
|
92 |
-
"""
|
93 |
-
predictions=[]
|
94 |
-
actuals=[]
|
95 |
-
|
96 |
-
model = GPT2LMHeadModel.from_pretrained(model_name_path)
|
97 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name_path)
|
98 |
-
|
99 |
-
# Add a [CLS] to the vocabulary (we should train it also!)
|
100 |
-
#special_tokens = {'bos_token':'<|startoftext|>','eos_token':'<|endoftext|>','pad_token':'<pad>','additional_special_tokens':['<|keyword|>','<|summarize|>']}
|
101 |
-
#tokenizer.add_special_tokens(special_tokens)
|
102 |
-
|
103 |
-
"""
|
104 |
-
special_tokens = {'pad_token':'<|pad|>','sep_token':'<|summarize|>'}
|
105 |
-
tokenizer.add_special_tokens(special_tokens)
|
106 |
-
|
107 |
-
#assert len(tokenizer) == 50261, "tokenizer size is not 50261"
|
108 |
-
model.resize_token_embeddings(len(tokenizer))
|
109 |
-
print(' ')
|
110 |
-
"""
|
111 |
-
|
112 |
-
model = model.to(device)
|
113 |
-
model.eval()
|
114 |
-
"""
|
115 |
-
input_text = input_text +' <|summarize|>'
|
116 |
-
input_token = tokenizer.encode(input_text)
|
117 |
-
input_token_torch = torch.tensor(input_token, dtype=torch.long)
|
118 |
-
"""
|
119 |
-
|
120 |
-
val_params = {
|
121 |
-
'batch_size':batch_size,
|
122 |
-
'shuffle': False,
|
123 |
-
'num_workers': 0
|
124 |
-
}
|
125 |
-
|
126 |
-
sp= open(src_txt,'r')
|
127 |
-
src= sp.readlines()
|
128 |
-
sp.close()
|
129 |
-
tp = open(tar_txt, 'r')
|
130 |
-
tar=tp.readlines()
|
131 |
-
tp.close()
|
132 |
-
val_set = GPT21024Dataset(tar, src,tokenizer, 512, 150)
|
133 |
-
val_loader = DataLoader(val_set, **val_params)
|
134 |
-
|
135 |
-
with torch.no_grad():
|
136 |
-
for _, data in enumerate(val_loader, 0):
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
target_output = data['actual_summary'].to(device, dtype = torch.long)
|
141 |
-
input_ids = data['article']
|
142 |
-
input_ids=input_ids.to(device)
|
143 |
-
#print(input_ids)
|
144 |
-
|
145 |
-
print(f'Length of the input context: {len(input_ids[0])}')
|
146 |
-
print(f'BEAM SIZE: {4}')
|
147 |
-
#input_ids.unsqueeze(0).to(device)
|
148 |
-
generated_output = model.generate(
|
149 |
-
input_ids=input_ids,
|
150 |
-
max_length= 582,
|
151 |
-
min_length = 562 ,
|
152 |
-
temperature=1.0,
|
153 |
-
decoder_start_token_id= '<|summarize|>',
|
154 |
-
num_beams=4,
|
155 |
-
num_return_sequences=1)
|
156 |
-
|
157 |
-
# print(f' Generated_output: {generated_output}')
|
158 |
-
|
159 |
-
preds=[]
|
160 |
-
target=[]
|
161 |
-
ids=[]
|
162 |
-
for g in generated_output:
|
163 |
-
preds.append(tokenizer.decode(g[len(input_ids[0]):] , skip_special_tokens=True))
|
164 |
-
|
165 |
-
#preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_output]
|
166 |
-
for t in target_output:
|
167 |
-
target.append(tokenizer.decode(t , skip_special_tokens=True))
|
168 |
-
#target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True)for t in y]
|
169 |
-
if _%100==0:
|
170 |
-
print(f'Completed {_}')
|
171 |
-
|
172 |
-
predictions.extend(preds)
|
173 |
-
actuals.extend(target)
|
174 |
-
|
175 |
-
gp= open(gen_path, 'w')
|
176 |
-
for pre in predictions:
|
177 |
-
gp.write(pre+"\n")
|
178 |
-
gp.close()
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|