|
from transformers import BartForSequenceClassification, BartTokenizer |
|
import gradio as grad |
|
bart_tkn = BartTokenizer.from_pretrained('oigele/Fb_improved_zeroshot') |
|
mdl = BartForSequenceClassification.from_pretrained('oigele/Fb_improved_zeroshot') |
|
|
|
def classify(text,label): |
|
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt') |
|
tkn_lgts = mdl(tkn_ids)[0] |
|
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]] |
|
probab = entail_contra_tkn_lgts.softmax(dim=1) |
|
response = probab[:,1].item() * 100 |
|
return response |
|
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") |
|
labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label") |
|
out=grad.Textbox(lines=1, label="Probablity of label being true is") |
|
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() |