Spaces:
Runtime error
Runtime error
Commit
Β·
836722f
1
Parent(s):
23672a2
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import accelerate
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import io
|
5 |
+
import librosa
|
6 |
+
import torch
|
7 |
+
import soundfile as sf
|
8 |
+
|
9 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
10 |
+
|
11 |
+
#Instantiating the model object.
|
12 |
+
|
13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(pretrained_model_name_or_path= "openai/whisper-large-v3",
|
14 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
15 |
+
use_safetensors=True).to("cuda")
|
16 |
+
|
17 |
+
#Instantiating the processor object.
|
18 |
+
|
19 |
+
processor = AutoProcessor.from_pretrained(pretrained_model_name_or_path="openai/whisper-large-v3")
|
20 |
+
|
21 |
+
#Instantiating the transformer class' pipeline object.
|
22 |
+
|
23 |
+
pipe = pipeline(task="automatic-speech-recognition",
|
24 |
+
model="openai/whisper-large-v3",
|
25 |
+
tokenizer=processor.tokenizer,
|
26 |
+
feature_extractor=processor.feature_extractor,
|
27 |
+
max_new_tokens=128,
|
28 |
+
chunk_length_s=30,
|
29 |
+
batch_size=16,
|
30 |
+
return_timestamps=True,
|
31 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
32 |
+
device="cuda")
|
33 |
+
|
34 |
+
#Defining speech-to-text function.
|
35 |
+
|
36 |
+
def convert(audio, state=""):
|
37 |
+
"""
|
38 |
+
This function performs speech to text conversion and will be used in Gradio's Interface function.
|
39 |
+
Parameters:
|
40 |
+
- audio: audio data as a bytes-like object.
|
41 |
+
- state: a string representing the accumulated text from previous conversions.
|
42 |
+
"""
|
43 |
+
time.sleep(3)
|
44 |
+
try:
|
45 |
+
result = pipe(audio)
|
46 |
+
transcribed_text = result['text']
|
47 |
+
state += transcribed_text + " "
|
48 |
+
except Exception as e:
|
49 |
+
return f"Error processing audio: Please start recording!", state
|
50 |
+
|
51 |
+
return state, state
|
52 |
+
|
53 |
+
#Instantiating Gradio Interface.
|
54 |
+
|
55 |
+
gr_interface = gr.Interface(
|
56 |
+
fn = convert,
|
57 |
+
title = "Automatic Speech-to-Text",
|
58 |
+
description = "### Record your speech and watch it get converted to text!",
|
59 |
+
inputs = [
|
60 |
+
gr.Audio(
|
61 |
+
label="Please Record Your Speech Here!",
|
62 |
+
sources="microphone",
|
63 |
+
type="filepath"),
|
64 |
+
"state"],
|
65 |
+
outputs = [
|
66 |
+
"textbox",
|
67 |
+
"state"
|
68 |
+
],
|
69 |
+
theme="dark",
|
70 |
+
live=True
|
71 |
+
)
|
72 |
+
|
73 |
+
#Launching the app (share=True).
|
74 |
+
|
75 |
+
gr_interface.launch()
|