import gradio as gr from unsloth import FastLanguageModel from transformers import TextStreamer # Load the model and tokenizer locally max_seq_length = 2048 dtype = None model_name_or_path = "michailroussos/model_llama_8d" # Load model and tokenizer using unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name_or_path, max_seq_length=max_seq_length, dtype=dtype, load_in_4bit=True, ) FastLanguageModel.for_inference(model) # Enable optimized inference # Define the response function def respond(message, history, system_message, max_tokens, temperature, top_p): # Build the chat message history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: # User message messages.append({"role": "user", "content": val[0]}) if val[1]: # Assistant message messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Tokenize the input messages inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, # Required for generation return_tensors="pt", ).to("cuda") # Initialize a TextStreamer for streaming output text_streamer = TextStreamer(tokenizer, skip_prompt=True) # Generate the model's response response = "" for output in model.generate( input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, top_p=top_p, ): token = tokenizer.decode(output, skip_special_tokens=True) response += token yield response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()