ID2223_lab2_8D / app.py
michailroussos
more changes to support no gpu
03dc554
import os
import gradio as gr
from unsloth import FastLanguageModel
import torch
# Disable CUDA explicitly by setting the environment variable
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disabling CUDA
# Set device to CPU
device = torch.device("cpu")
model_name_or_path = "michailroussos/model_llama_8d"
max_seq_length = 2048
dtype = None
# Load the model on CPU
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path, # Your model path
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True,
).to(device) # Ensure the model is on CPU
# Enable native faster inference if possible
FastLanguageModel.for_inference(model)
# Define the inference function
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Perform inference on CPU
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(device)
for message in model.generate(input_ids=inputs['input_ids'], streamer=None, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p):
token = message.choices[0].delta.content
response += token
yield response
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Launch Gradio app
if __name__ == "__main__":
demo.launch()