Spaces:
Runtime error
Runtime error
File size: 2,242 Bytes
7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 3382226 7f692e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from unsloth import FastLanguageModel
from transformers import TextStreamer
# Load the model and tokenizer locally
max_seq_length = 2048
dtype = None
model_name_or_path = "michailroussos/model_llama_8d"
# Load model and tokenizer using unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model) # Enable optimized inference
# Define the response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Build the chat message history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]: # User message
messages.append({"role": "user", "content": val[0]})
if val[1]: # Assistant message
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize the input messages
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True, # Required for generation
return_tensors="pt",
).to("cuda")
# Initialize a TextStreamer for streaming output
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
# Generate the model's response
response = ""
for output in model.generate(
input_ids=inputs,
streamer=text_streamer,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=top_p,
):
token = tokenizer.decode(output, skip_special_tokens=True)
response += token
yield response
# Define the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|