michailroussos commited on
Commit
e8ace7a
·
1 Parent(s): 80bc875
Files changed (1) hide show
  1. app.py +23 -8
app.py CHANGED
@@ -19,14 +19,16 @@ FastLanguageModel.for_inference(model) # Enable optimized inference
19
 
20
  # Define the response function
21
  def respond(message, history, system_message, max_tokens, temperature, top_p):
22
- # Combine system and user inputs
23
- messages = [{"role": "system", "content": system_message}] + [
24
- {"role": "user", "content": user_msg} if assistant_msg is None else {"role": "assistant", "content": assistant_msg}
25
- for user_msg, assistant_msg in history
26
- ]
 
 
27
  messages.append({"role": "user", "content": message})
28
 
29
- # Apply the chat template
30
  inputs = tokenizer.apply_chat_template(
31
  messages,
32
  tokenize=True,
@@ -34,8 +36,21 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
34
  return_tensors="pt",
35
  ).to("cuda" if torch.cuda.is_available() else "cpu")
36
 
37
- # Use a TextStreamer for real-time decoding
38
- streamer = TextStreamer(tokenizer, skip_prompt=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  _ = model.generate(
40
  input_ids=inputs,
41
  max_new_tokens=max_tokens,
 
19
 
20
  # Define the response function
21
  def respond(message, history, system_message, max_tokens, temperature, top_p):
22
+ # Combine system message and conversation history
23
+ messages = [{"role": "system", "content": system_message}]
24
+ for user_msg, assistant_msg in history:
25
+ if user_msg:
26
+ messages.append({"role": "user", "content": user_msg})
27
+ if assistant_msg:
28
+ messages.append({"role": "assistant", "content": assistant_msg})
29
  messages.append({"role": "user", "content": message})
30
 
31
+ # Tokenize inputs
32
  inputs = tokenizer.apply_chat_template(
33
  messages,
34
  tokenize=True,
 
36
  return_tensors="pt",
37
  ).to("cuda" if torch.cuda.is_available() else "cpu")
38
 
39
+ # Use TextStreamer to process and yield outputs incrementally
40
+ class GradioStreamer(TextStreamer):
41
+ def __init__(self, tokenizer, *args, **kwargs):
42
+ super().__init__(tokenizer, *args, **kwargs)
43
+ self.generated_text = ""
44
+
45
+ def on_token(self, token_id):
46
+ token = self.tokenizer.decode(token_id, skip_special_tokens=True)
47
+ self.generated_text += token
48
+ yield self.generated_text
49
+
50
+ # Initialize Gradio-compatible streamer
51
+ streamer = GradioStreamer(tokenizer, skip_prompt=True)
52
+
53
+ # Generate response with streaming
54
  _ = model.generate(
55
  input_ids=inputs,
56
  max_new_tokens=max_tokens,