michailroussos commited on
Commit
db497f0
·
1 Parent(s): bafd5e5

more changes

Browse files
Files changed (1) hide show
  1. app.py +13 -28
app.py CHANGED
@@ -19,47 +19,32 @@ FastLanguageModel.for_inference(model) # Enable optimized inference
19
 
20
  # Define the response function
21
  def respond(message, history, system_message, max_tokens, temperature, top_p):
22
- messages = [{"role": "system", "content": system_message}]
23
-
24
- # Append past conversation history
25
- for user_msg, assistant_msg in history:
26
- if user_msg:
27
- messages.append({"role": "user", "content": user_msg})
28
- if assistant_msg:
29
- messages.append({"role": "assistant", "content": assistant_msg})
30
-
31
- # Add the user's current message
32
  messages.append({"role": "user", "content": message})
33
 
34
- # Tokenize the input with proper attention mask
35
  inputs = tokenizer.apply_chat_template(
36
  messages,
37
  tokenize=True,
38
  add_generation_prompt=True,
39
  return_tensors="pt",
40
- )
41
- inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")
42
- attention_mask = inputs.ne(tokenizer.pad_token_id).long()
43
-
44
- # Generate the output using the model
45
- output = model.generate(
46
  input_ids=inputs,
47
- attention_mask=attention_mask,
48
  max_new_tokens=max_tokens,
 
49
  temperature=temperature,
50
  top_p=top_p,
51
- pad_token_id=tokenizer.eos_token_id, # Ensure padding is replaced with EOS
52
  )
53
- print("output")
54
- print(output)
55
- # Decode the generated output
56
- response = tokenizer.decode(
57
- output[0], skip_special_tokens=True
58
- ).strip() # Remove any extra whitespace or unexpected tokens
59
-
60
 
61
- # Yield the clean response for display
62
- yield response
63
 
64
 
65
  # Define the Gradio interface
 
19
 
20
  # Define the response function
21
  def respond(message, history, system_message, max_tokens, temperature, top_p):
22
+ # Combine system and user inputs
23
+ messages = [{"role": "system", "content": system_message}] + [
24
+ {"role": "user", "content": user_msg} if assistant_msg is None else {"role": "assistant", "content": assistant_msg}
25
+ for user_msg, assistant_msg in history
26
+ ]
 
 
 
 
 
27
  messages.append({"role": "user", "content": message})
28
 
29
+ # Apply the chat template
30
  inputs = tokenizer.apply_chat_template(
31
  messages,
32
  tokenize=True,
33
  add_generation_prompt=True,
34
  return_tensors="pt",
35
+ ).to("cuda" if torch.cuda.is_available() else "cpu")
36
+
37
+ # Use a TextStreamer for real-time decoding
38
+ streamer = TextStreamer(tokenizer, skip_prompt=True)
39
+ model.generate(
 
40
  input_ids=inputs,
41
+ streamer=streamer,
42
  max_new_tokens=max_tokens,
43
+ use_cache=True,
44
  temperature=temperature,
45
  top_p=top_p,
 
46
  )
 
 
 
 
 
 
 
47
 
 
 
48
 
49
 
50
  # Define the Gradio interface