Spaces:
Runtime error
Runtime error
michailroussos
commited on
Commit
·
bad2083
1
Parent(s):
ebd9e26
more
Browse files
app.py
CHANGED
@@ -1,25 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from unsloth import FastLanguageModel
|
3 |
-
from transformers import TextStreamer
|
4 |
import torch
|
5 |
|
6 |
# Load the model and tokenizer locally
|
7 |
max_seq_length = 2048
|
8 |
-
dtype = None
|
9 |
model_name_or_path = "michailroussos/model_llama_8d"
|
10 |
|
11 |
# Load model and tokenizer using unsloth
|
12 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
13 |
model_name=model_name_or_path,
|
14 |
max_seq_length=max_seq_length,
|
15 |
-
dtype=dtype,
|
16 |
load_in_4bit=True,
|
17 |
)
|
18 |
FastLanguageModel.for_inference(model) # Enable optimized inference
|
19 |
|
20 |
# Define the response function
|
21 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
22 |
-
# Combine system message and conversation history
|
23 |
messages = [{"role": "system", "content": system_message}]
|
24 |
for user_msg, assistant_msg in history:
|
25 |
if user_msg:
|
@@ -28,17 +24,15 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
28 |
messages.append({"role": "assistant", "content": assistant_msg})
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
31 |
-
# Tokenize inputs
|
32 |
inputs = tokenizer.apply_chat_template(
|
33 |
messages,
|
34 |
tokenize=True,
|
35 |
add_generation_prompt=True,
|
36 |
return_tensors="pt",
|
37 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
-
|
39 |
-
attention_mask = inputs.ne(tokenizer.pad_token_id).long()
|
40 |
-
|
41 |
-
# Generate response tokens
|
42 |
generated_tokens = model.generate(
|
43 |
input_ids=inputs,
|
44 |
attention_mask=attention_mask,
|
@@ -47,15 +41,9 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
47 |
temperature=temperature,
|
48 |
top_p=top_p,
|
49 |
)
|
50 |
-
|
51 |
-
# Decode generated tokens
|
52 |
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
53 |
-
|
54 |
-
# Yield response in the required Gradio format
|
55 |
yield [{"role": "assistant", "content": response}]
|
56 |
|
57 |
-
|
58 |
-
|
59 |
# Define the Gradio interface
|
60 |
demo = gr.ChatInterface(
|
61 |
respond,
|
@@ -65,7 +53,7 @@ demo = gr.ChatInterface(
|
|
65 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
66 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
67 |
],
|
68 |
-
type="messages"
|
69 |
)
|
70 |
|
71 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from unsloth import FastLanguageModel
|
|
|
3 |
import torch
|
4 |
|
5 |
# Load the model and tokenizer locally
|
6 |
max_seq_length = 2048
|
|
|
7 |
model_name_or_path = "michailroussos/model_llama_8d"
|
8 |
|
9 |
# Load model and tokenizer using unsloth
|
10 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
11 |
model_name=model_name_or_path,
|
12 |
max_seq_length=max_seq_length,
|
|
|
13 |
load_in_4bit=True,
|
14 |
)
|
15 |
FastLanguageModel.for_inference(model) # Enable optimized inference
|
16 |
|
17 |
# Define the response function
|
18 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
19 |
messages = [{"role": "system", "content": system_message}]
|
20 |
for user_msg, assistant_msg in history:
|
21 |
if user_msg:
|
|
|
24 |
messages.append({"role": "assistant", "content": assistant_msg})
|
25 |
messages.append({"role": "user", "content": message})
|
26 |
|
|
|
27 |
inputs = tokenizer.apply_chat_template(
|
28 |
messages,
|
29 |
tokenize=True,
|
30 |
add_generation_prompt=True,
|
31 |
return_tensors="pt",
|
32 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
|
34 |
+
attention_mask = inputs.ne(tokenizer.pad_token_id).long()
|
35 |
+
|
|
|
36 |
generated_tokens = model.generate(
|
37 |
input_ids=inputs,
|
38 |
attention_mask=attention_mask,
|
|
|
41 |
temperature=temperature,
|
42 |
top_p=top_p,
|
43 |
)
|
|
|
|
|
44 |
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
|
|
|
|
45 |
yield [{"role": "assistant", "content": response}]
|
46 |
|
|
|
|
|
47 |
# Define the Gradio interface
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
|
|
53 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
55 |
],
|
56 |
+
type="messages",
|
57 |
)
|
58 |
|
59 |
if __name__ == "__main__":
|