michailroussos commited on
Commit
832a4d2
·
1 Parent(s): 987f889
Files changed (1) hide show
  1. app.py +39 -35
app.py CHANGED
@@ -1,64 +1,68 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("michailroussos/model_llama_8d")
8
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
- if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ from transformers import TextStreamer
4
 
5
+ # Load the model and tokenizer locally
6
+ max_seq_length = 2048
7
+ dtype = None
8
+ model_name_or_path = "michailroussos/model_llama_8d"
9
 
10
+ # Load model and tokenizer using unsloth
11
+ model, tokenizer = FastLanguageModel.from_pretrained(
12
+ model_name=model_name_or_path,
13
+ max_seq_length=max_seq_length,
14
+ dtype=dtype,
15
+ load_in_4bit=True,
16
+ )
17
+ FastLanguageModel.for_inference(model) # Enable optimized inference
18
 
19
+ # Define the response function
20
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
21
+ # Build the chat message history
 
 
 
 
 
22
  messages = [{"role": "system", "content": system_message}]
 
23
  for val in history:
24
+ if val[0]: # User message
25
  messages.append({"role": "user", "content": val[0]})
26
+ if val[1]: # Assistant message
27
  messages.append({"role": "assistant", "content": val[1]})
 
28
  messages.append({"role": "user", "content": message})
29
+
30
+ # Tokenize the input messages
31
+ inputs = tokenizer.apply_chat_template(
32
+ messages,
33
+ tokenize=True,
34
+ add_generation_prompt=True, # Required for generation
35
+ return_tensors="pt",
36
+ ).to("cuda")
37
 
38
+ # Initialize a TextStreamer for streaming output
39
+ text_streamer = TextStreamer(tokenizer, skip_prompt=True)
40
 
41
+ # Generate the model's response
42
+ response = ""
43
+ for output in model.generate(
44
+ input_ids=inputs,
45
+ streamer=text_streamer,
46
+ max_new_tokens=max_tokens,
47
+ use_cache=True,
48
  temperature=temperature,
49
  top_p=top_p,
50
  ):
51
+ token = tokenizer.decode(output, skip_special_tokens=True)
 
52
  response += token
53
  yield response
54
 
55
 
56
+ # Define the Gradio interface
 
 
57
  demo = gr.ChatInterface(
58
  respond,
59
  additional_inputs=[
60
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
61
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
62
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
63
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
64
  ],
65
  )
66
 
 
67
  if __name__ == "__main__":
68
  demo.launch()