Spaces:
Runtime error
Runtime error
michailroussos
commited on
Commit
·
3dc2f1d
1
Parent(s):
35ddf38
more
Browse files
app.py
CHANGED
@@ -1,124 +1,64 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from unsloth import FastLanguageModel
|
3 |
-
import torch
|
4 |
|
5 |
-
#
|
6 |
max_seq_length = 2048
|
|
|
7 |
model_name_or_path = "michailroussos/model_llama_8d"
|
8 |
|
9 |
-
# Load model and tokenizer
|
10 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
11 |
model_name=model_name_or_path,
|
12 |
max_seq_length=max_seq_length,
|
|
|
13 |
load_in_4bit=True,
|
14 |
)
|
15 |
-
FastLanguageModel.for_inference(model) # Enable optimized inference
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
print("\n" + "="*50)
|
20 |
-
print("===== RESPOND FUNCTION CALLED =====")
|
21 |
-
print("="*50)
|
22 |
-
|
23 |
-
# Print input parameters
|
24 |
-
print(f"Input Message: {message}")
|
25 |
-
print(f"System Message: {system_message}")
|
26 |
-
print(f"Max Tokens: {max_tokens}")
|
27 |
-
print(f"Temperature: {temperature}")
|
28 |
-
print(f"Top-p: {top_p}")
|
29 |
-
|
30 |
-
# Debug history
|
31 |
-
print("\n--- Current History ---")
|
32 |
-
print(f"History Type: {type(history)}")
|
33 |
-
print(f"History Content: {history}")
|
34 |
-
|
35 |
-
# Ensure history is formatted as a list of dictionaries
|
36 |
-
messages = [{"role": "system", "content": system_message}] # Add system message at the start
|
37 |
|
|
|
|
|
38 |
try:
|
39 |
-
|
40 |
-
|
41 |
-
for entry in history:
|
42 |
-
# Ensure each history entry is in the correct format
|
43 |
-
if isinstance(entry, dict) and 'role' in entry and 'content' in entry:
|
44 |
-
messages.append(entry)
|
45 |
-
else:
|
46 |
-
print(f"Skipping malformed history entry: {entry}")
|
47 |
|
48 |
-
#
|
49 |
-
print("\n--- Adding Current Message ---")
|
50 |
-
messages.append({"role": "user", "content": message})
|
51 |
-
|
52 |
-
# Debug messages before tokenization
|
53 |
-
print("\n--- Messages Before Tokenization ---")
|
54 |
-
for msg in messages:
|
55 |
-
print(f"Role: {msg['role']}, Content: {msg['content'][:100]}...")
|
56 |
-
|
57 |
-
# Tokenize the input
|
58 |
-
print("\n--- Tokenizing Input ---")
|
59 |
inputs = tokenizer.apply_chat_template(
|
60 |
messages,
|
61 |
tokenize=True,
|
62 |
add_generation_prompt=True,
|
63 |
return_tensors="pt",
|
64 |
-
).to("cuda"
|
65 |
-
|
66 |
-
print(f"Tokenized Inputs Shape: {inputs.shape}")
|
67 |
-
print(f"Tokenized Inputs Device: {inputs.device}")
|
68 |
-
|
69 |
# Generate response
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Prepare return history in OpenAI messages format
|
88 |
-
return_messages = [{"role": "user", "content": message},
|
89 |
-
{"role": "assistant", "content": response}]
|
90 |
-
|
91 |
-
# Add previous conversation turns if any
|
92 |
-
for entry in (history or []):
|
93 |
-
return_messages.insert(0, {"role": entry['role'], "content": entry['content']})
|
94 |
-
|
95 |
-
print("\n--- Return Messages ---")
|
96 |
-
for msg in return_messages:
|
97 |
-
print(f"Role: {msg['role']}, Content: {msg['content'][:100]}...")
|
98 |
-
|
99 |
-
return return_messages
|
100 |
-
|
101 |
-
except Exception as gen_error:
|
102 |
-
print("\n--- GENERATION ERROR ---")
|
103 |
-
print(f"Error during model generation: {gen_error}")
|
104 |
-
return []
|
105 |
-
|
106 |
-
except Exception as prep_error:
|
107 |
-
print("\n--- PREPARATION ERROR ---")
|
108 |
-
print(f"Error during message preparation: {prep_error}")
|
109 |
-
return []
|
110 |
|
111 |
-
#
|
112 |
demo = gr.ChatInterface(
|
113 |
-
fn=
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
118 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
119 |
-
],
|
120 |
-
type="messages" # Explicitly set to messages type
|
121 |
)
|
122 |
|
|
|
123 |
if __name__ == "__main__":
|
124 |
-
demo.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import TextStreamer
|
3 |
from unsloth import FastLanguageModel
|
|
|
4 |
|
5 |
+
# Define constants
|
6 |
max_seq_length = 2048
|
7 |
+
dtype = None
|
8 |
model_name_or_path = "michailroussos/model_llama_8d"
|
9 |
|
10 |
+
# Load the model and tokenizer
|
11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
model_name=model_name_or_path,
|
13 |
max_seq_length=max_seq_length,
|
14 |
+
dtype=dtype,
|
15 |
load_in_4bit=True,
|
16 |
)
|
|
|
17 |
|
18 |
+
# Optimize model for inference
|
19 |
+
FastLanguageModel.for_inference(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Function to generate a response
|
22 |
+
def chat_with_model(user_message, chat_history=None):
|
23 |
try:
|
24 |
+
# Prepare the input messages
|
25 |
+
messages = [{"role": "user", "content": user_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Tokenize and prepare inputs for the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
inputs = tokenizer.apply_chat_template(
|
29 |
messages,
|
30 |
tokenize=True,
|
31 |
add_generation_prompt=True,
|
32 |
return_tensors="pt",
|
33 |
+
).to("cuda")
|
34 |
+
|
|
|
|
|
|
|
35 |
# Generate response
|
36 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
37 |
+
output = model.generate(
|
38 |
+
input_ids=inputs,
|
39 |
+
streamer=text_streamer,
|
40 |
+
max_new_tokens=128,
|
41 |
+
use_cache=True,
|
42 |
+
temperature=1.5,
|
43 |
+
min_p=0.1,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Append the response to the chat history
|
47 |
+
if chat_history is None:
|
48 |
+
chat_history = []
|
49 |
+
chat_history.append((user_message, output))
|
50 |
+
return "", chat_history
|
51 |
+
except Exception as e:
|
52 |
+
return f"Error: {str(e)}", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Create the chat interface
|
55 |
demo = gr.ChatInterface(
|
56 |
+
fn=chat_with_model,
|
57 |
+
chatbot=gr.Chatbot(label="Chat with Hugging Face Model"),
|
58 |
+
title="Hugging Face Chat Model",
|
59 |
+
description="Chat with a Hugging Face model using FastLanguageModel.",
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
+
# Launch the app
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch()
|