Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import TextStreamer | |
from unsloth import FastLanguageModel | |
import torch | |
# Model Configuration | |
max_seq_length = 2048 | |
dtype = None | |
model_name_or_path = "michailroussos/model_llama_8d" | |
#model_name_or_path = "Natassaf/lora_model-llama-new" | |
# Load Model and Tokenizer | |
print("Loading model...") | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name_or_path, | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=True, | |
) | |
FastLanguageModel.for_inference(model) # Enable faster inference | |
print("Model loaded successfully!") | |
# Gradio Response Function | |
from transformers import TextStreamer | |
def respond(message, max_new_tokens, temperature, system_message="You are a helpful assistant. You should reply to the user's message without repeating the input."): | |
try: | |
# Prepare input messages | |
messages = [{"role": "system", "content": system_message}] if system_message else [] | |
messages.append({"role": "user", "content": message}) | |
# Tokenize inputs | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda") | |
# Ensure the input tensor has the correct dimensions | |
if input_ids.dim() != 2: | |
raise ValueError(f"`input_ids` must be a 2D tensor. Found shape: {input_ids.shape}") | |
# Generate output directly | |
with torch.no_grad(): # No need to track gradients for inference | |
output = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
use_cache=True, | |
) | |
promt = messages[0]['content'] | |
promt += "assistant" | |
print("[DEBUG] prompt with assistant:",promt) | |
# Decode the generated tokens back to text | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
print("[DEBUG] Generated Text:", generated_text) | |
start_pos = generated_text.find(promt) | |
result_text = generated_text[start_pos + len(promt)+2:] | |
print("[DEBUG] Result Text:", result_text) | |
#print("[DEBUG] Generated Text:", generated_text) | |
# Clean up the response by removing unwanted parts (e.g., system and user info) | |
cleaned_response = "".join(generated_text.split("\n")[9:]) # Assuming the response ends at the last line | |
# Debug: Show the cleaned response | |
print("[DEBUG] Cleaned Response:", cleaned_response) | |
return result_text | |
except Exception as e: | |
# Debug: Log errors | |
print("[ERROR]", str(e)) | |
return f"Error: {str(e)}" | |
# Gradio UI | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(label="Your Message", placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=1, maximum=512, step=1, value=128, label="Max New Tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature"), | |
gr.Textbox(label="System Message", placeholder="Optional system instructions."), | |
], | |
outputs="text", | |
title="LLama-based Chatbot", | |
description="Interact with the model. Enter a prompt and receive a response.", | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |