Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import TextStreamer | |
| from unsloth import FastLanguageModel | |
| import torch | |
| # Model Configuration | |
| max_seq_length = 2048 | |
| dtype = None | |
| model_name_or_path = "michailroussos/model_llama_8d" | |
| #model_name_or_path = "Natassaf/lora_model-llama-new" | |
| # Load Model and Tokenizer | |
| print("Loading model...") | |
| model, tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=model_name_or_path, | |
| max_seq_length=max_seq_length, | |
| dtype=dtype, | |
| load_in_4bit=True, | |
| ) | |
| FastLanguageModel.for_inference(model) # Enable faster inference | |
| print("Model loaded successfully!") | |
| # Gradio Response Function | |
| from transformers import TextStreamer | |
| def respond(message, max_new_tokens, temperature, system_message="You are a helpful assistant. You should reply to the user's message without repeating the input."): | |
| try: | |
| # Prepare input messages | |
| messages = [{"role": "system", "content": system_message}] if system_message else [] | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize inputs | |
| input_ids = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| ).to("cuda") | |
| # Ensure the input tensor has the correct dimensions | |
| if input_ids.dim() != 2: | |
| raise ValueError(f"`input_ids` must be a 2D tensor. Found shape: {input_ids.shape}") | |
| # Generate output directly | |
| with torch.no_grad(): # No need to track gradients for inference | |
| output = model.generate( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| use_cache=True, | |
| ) | |
| promt = messages[0]['content'] | |
| promt += "assistant" | |
| print("[DEBUG] prompt with assistant:",promt) | |
| # Decode the generated tokens back to text | |
| generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
| print("[DEBUG] Generated Text:", generated_text) | |
| start_pos = generated_text.find(promt) | |
| result_text = generated_text[start_pos + len(promt)+2:] | |
| print("[DEBUG] Result Text:", result_text) | |
| #print("[DEBUG] Generated Text:", generated_text) | |
| # Clean up the response by removing unwanted parts (e.g., system and user info) | |
| cleaned_response = "".join(generated_text.split("\n")[9:]) # Assuming the response ends at the last line | |
| # Debug: Show the cleaned response | |
| print("[DEBUG] Cleaned Response:", cleaned_response) | |
| return result_text | |
| except Exception as e: | |
| # Debug: Log errors | |
| print("[ERROR]", str(e)) | |
| return f"Error: {str(e)}" | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=respond, | |
| inputs=[ | |
| gr.Textbox(label="Your Message", placeholder="Enter your prompt here..."), | |
| gr.Slider(minimum=1, maximum=512, step=1, value=128, label="Max New Tokens"), | |
| gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature"), | |
| gr.Textbox(label="System Message", placeholder="Optional system instructions."), | |
| ], | |
| outputs="text", | |
| title="LLama-based Chatbot", | |
| description="Interact with the model. Enter a prompt and receive a response.", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |