michailroussos
more
be78dc3
raw
history blame
3.35 kB
import gradio as gr
from unsloth import FastLanguageModel
import torch
# Load the model and tokenizer locally
max_seq_length = 2048
model_name_or_path = "michailroussos/model_llama_8d"
# Load model and tokenizer using unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path,
max_seq_length=max_seq_length,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model) # Enable optimized inference
# Define the response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Print the inputs at the start
print("===== Respond Function Called =====")
print(f"Received message: {message}")
print(f"Current history: {history}")
# Prepare the messages for the model
messages = []
if history:
print("Adding previous messages to the history...")
for entry in history:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
# Add the current user message
print(f"Adding current user message: {message}")
messages.append({"role": "user", "content": message})
# Print the messages list before tokenization
print("Messages before tokenization:", messages)
# Tokenize the input (prepare the data for the model)
print("Preparing the input for the model...")
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to("cuda" if torch.cuda.is_available() else "cpu")
# Print the tokenized inputs
print(f"Tokenized inputs: {inputs}")
# Generate the response
attention_mask = inputs.ne(tokenizer.pad_token_id).long()
print(f"Attention mask: {attention_mask}")
try:
generated_tokens = model.generate(
input_ids=inputs,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
except Exception as e:
print(f"Error during model generation: {e}")
return []
# Decode the generated response
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
print(f"Generated response: {response}")
# Check and filter out unwanted system-level messages or metadata
if "system" in response.lower():
print("System message detected. Replacing with fallback response.")
response = "Hello! How can I assist you today?"
# Prepare the return format for Gradio (list of [user_message, assistant_message])
if history is None:
history = []
# Append the new conversation turn
history.append([message, response])
return history
# Define the Gradio interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch(share=False) # Use share=False for local testing