Spaces:
Runtime error
Runtime error
import gradio as gr | |
from unsloth import FastLanguageModel | |
import torch | |
# Load the model and tokenizer locally | |
max_seq_length = 2048 | |
model_name_or_path = "michailroussos/model_llama_8d" | |
# Load model and tokenizer using unsloth | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name_or_path, | |
max_seq_length=max_seq_length, | |
load_in_4bit=True, | |
) | |
FastLanguageModel.for_inference(model) # Enable optimized inference | |
# Define the response function | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
# Print the inputs at the start | |
print("===== Respond Function Called =====") | |
print(f"Received message: {message}") | |
print(f"Current history: {history}") | |
# Prepare the messages for the model | |
messages = [] | |
if history: | |
print("Adding previous messages to the history...") | |
for entry in history: | |
messages.append({"role": "user", "content": entry[0]}) | |
messages.append({"role": "assistant", "content": entry[1]}) | |
# Add the current user message | |
print(f"Adding current user message: {message}") | |
messages.append({"role": "user", "content": message}) | |
# Print the messages list before tokenization | |
print("Messages before tokenization:", messages) | |
# Tokenize the input (prepare the data for the model) | |
print("Preparing the input for the model...") | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda" if torch.cuda.is_available() else "cpu") | |
# Print the tokenized inputs | |
print(f"Tokenized inputs: {inputs}") | |
# Generate the response | |
attention_mask = inputs.ne(tokenizer.pad_token_id).long() | |
print(f"Attention mask: {attention_mask}") | |
try: | |
generated_tokens = model.generate( | |
input_ids=inputs, | |
attention_mask=attention_mask, | |
max_new_tokens=max_tokens, | |
use_cache=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
except Exception as e: | |
print(f"Error during model generation: {e}") | |
return [] | |
# Decode the generated response | |
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) | |
print(f"Generated response: {response}") | |
# Check and filter out unwanted system-level messages or metadata | |
if "system" in response.lower(): | |
print("System message detected. Replacing with fallback response.") | |
response = "Hello! How can I assist you today?" | |
# Prepare the return format for Gradio (list of [user_message, assistant_message]) | |
if history is None: | |
history = [] | |
# Append the new conversation turn | |
history.append([message, response]) | |
return history | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) # Use share=False for local testing |