Spaces:
Runtime error
Runtime error
import gradio as gr | |
from unsloth import FastLanguageModel | |
from transformers import AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
model_name_or_path = "michailroussos/model_llama_8d" | |
max_seq_length = 2048 | |
dtype = None | |
print("Loading model...") | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name_or_path, | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=True, | |
) | |
FastLanguageModel.for_inference(model) | |
print("Model loaded successfully!") | |
# Define response function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
try: | |
# Debug: Print inputs | |
print("\n[DEBUG] Incoming user message:", message) | |
print("[DEBUG] Chat history before appending:", history) | |
# Prepare messages | |
messages = [{"role": "system", "content": system_message}] | |
for user, assistant in history: | |
if user: | |
messages.append({"role": "user", "content": user}) | |
if assistant: | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
# Debug: Print prepared messages | |
print("[DEBUG] Prepared messages:", messages) | |
# Tokenize and prepare inputs | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
).to("cuda") | |
# Debug: Print tokenized inputs | |
print("[DEBUG] Tokenized inputs:", inputs) | |
# Generate response | |
output_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
use_cache=True, | |
) | |
# Decode response | |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() | |
print("[DEBUG] Decoded response:", response) | |
# Update history | |
history.append((message, response)) | |
return response, history | |
except Exception as e: | |
print("[ERROR] Exception in respond function:", str(e)) | |
return f"Error: {str(e)}", history | |
# Create ChatInterface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch(share=True) | |