michailroussos
more
0787acc
raw
history blame
2.88 kB
import gradio as gr
from unsloth import FastLanguageModel
from transformers import AutoTokenizer
import torch
# Load the model and tokenizer
model_name_or_path = "michailroussos/model_llama_8d"
max_seq_length = 2048
dtype = None
print("Loading model...")
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model)
print("Model loaded successfully!")
# Define response function
def respond(
message,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
try:
# Debug: Print inputs
print("\n[DEBUG] Incoming user message:", message)
print("[DEBUG] Chat history before appending:", history)
# Prepare messages
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
# Debug: Print prepared messages
print("[DEBUG] Prepared messages:", messages)
# Tokenize and prepare inputs
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to("cuda")
# Debug: Print tokenized inputs
print("[DEBUG] Tokenized inputs:", inputs)
# Generate response
output_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
use_cache=True,
)
# Decode response
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print("[DEBUG] Decoded response:", response)
# Update history
history.append((message, response))
return response, history
except Exception as e:
print("[ERROR] Exception in respond function:", str(e))
return f"Error: {str(e)}", history
# Create ChatInterface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True)