michailroussos
more
0556c99
raw
history blame
3.26 kB
import gradio as gr
from unsloth import FastLanguageModel
import torch
# Load the model and tokenizer locally
max_seq_length = 2048
model_name_or_path = "michailroussos/model_llama_8d"
# Load model and tokenizer using unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name_or_path,
max_seq_length=max_seq_length,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model) # Enable optimized inference
# Define the response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Prepare the messages, separating the system message from user/assistant pairs
messages = [{"role": "system", "content": system_message}]
# Append the conversation history (user-assistant pairs)
if history:
for entry in history:
messages.append({"role": "user", "content": entry["user"]})
messages.append({"role": "assistant", "content": entry["assistant"]})
# Add the user's new message to the list of messages
messages.append({"role": "user", "content": message})
# Tokenize the input
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
).to("cuda" if torch.cuda.is_available() else "cpu")
# Generate the response
#attention_mask = inputs.ne(tokenizer.pad_token_id).long()
generated_tokens = model.generate(
input_ids=inputs,
#attention_mask=attention_mask,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
response = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
# Clean the response to ensure no system messages are included
response = response.replace("Cutting Knowledge Date", "").replace("You are a helpful assistant.", "").strip()
# Debug: Print the raw and cleaned assistant response
print("Raw Assistant Response:", response)
# Update the conversation history with the new user-assistant interaction
if history is None:
history = []
history.append({"user": message, "assistant": response})
# Debug: Print updated history
print("Updated History:", history)
# Format the history into the structure expected by Gradio
formatted_history = []
for entry in history:
formatted_history.append({"role": "user", "content": entry["user"]})
formatted_history.append({"role": "assistant", "content": entry["assistant"]})
# Debug: Print the formatted history
print("Formatted History:", formatted_history)
# Return the formatted history
return formatted_history
# Define the Gradio interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
type="messages",
)
if __name__ == "__main__":
demo.launch(share=False) # Use share=False for local testing