import gradio as gr from ctransformers import AutoModelForCausalLM # Use ctransformers for GGUF models client = AutoModelForCausalLM.from_pretrained( "michailroussos/model-mistral_CP1250", model_type='mistral', gpu_layers=0 # Set to 0 for CPU, or appropriate number for GPU ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Combine system message and current message full_prompt = f"{system_message}\n{message}" # Generate response response = client( full_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p ) return response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()