Spaces:
Sleeping
Sleeping
File size: 16,060 Bytes
6f61bb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import json
import logging
import re
import threading
import time
import traceback
import requests
from digester.util import get_config, Prompt, get_token, get_first_n_tokens_and_remaining, provide_text_with_css, GradioInputs
timeout_bot_msg = "Request timeout. Network error"
SYSTEM_PROMPT = "Be a assistant to digest youtube, podcast content to give summaries and insights"
TIMEOUT_MSG = f'{provide_text_with_css("ERROR", "red")} Request timeout.'
TOKEN_EXCEED_MSG = f'{provide_text_with_css("ERROR", "red")} Exceed token but it should not happen and should be splitted.'
# This piece of code heavily reference
# - https://github.com/GaiZhenbiao/ChuanhuChatGPT
# - https://github.com/binary-husky/chatgpt_academic
config = get_config()
class LLMService:
@staticmethod
def report_exception(chatbot, history, chat_input, chat_output):
chatbot.append((chat_input, chat_output))
history.append(chat_input)
history.append(chat_output)
@staticmethod
def get_full_error(chunk, stream_response):
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
@staticmethod
def generate_payload(api_key, gpt_model, inputs, history, stream):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
conversation_cnt = len(history) // 2
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index + 1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
payload = {
"model": gpt_model,
"messages": messages,
"temperature": 1.0,
"top_p": 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
print(f"generate_payload() LLM: {gpt_model}, conversation_cnt: {conversation_cnt}")
print(f"\n[[[[[INPUT]]]]]\n{inputs}")
print(f"[[[[[OUTPUT]]]]]")
return headers, payload
class ChatGPTService:
@staticmethod
def say(user_say, chatbot_say, chatbot, history, status, source_md, is_append=True):
if is_append:
chatbot.append((user_say, chatbot_say))
else:
chatbot[-1] = (user_say, chatbot_say)
yield chatbot, history, status, source_md
@staticmethod
def get_reduce_token_percent(text):
try:
pattern = r"(\d+)\s+tokens\b"
match = re.findall(pattern, text)
EXCEED_ALLO = 500
max_limit = float(match[0]) - EXCEED_ALLO
current_tokens = float(match[1])
ratio = max_limit / current_tokens
assert ratio > 0 and ratio < 1
return ratio, str(int(current_tokens - max_limit))
except:
return 0.5, 'Unknown'
@staticmethod
def trigger_callgpt_pipeline(prompt_obj: Prompt, prompt_show_user: str, g_inputs: GradioInputs, is_timestamp=False):
chatbot, history, source_md, api_key, gpt_model = g_inputs.chatbot, g_inputs.history, f"[{g_inputs.source_textbox}] {g_inputs.source_target_textbox}", g_inputs.apikey_textbox, g_inputs.gpt_model_textbox
yield from ChatGPTService.say(prompt_show_user, f"{provide_text_with_css('INFO', 'blue')} waiting for ChatGPT's response.", chatbot, history, "Success", source_md)
prompts = ChatGPTService.split_prompt_content(prompt_obj, is_timestamp)
full_gpt_response = ""
for i, prompt in enumerate(prompts):
yield from ChatGPTService.say(None, f"{provide_text_with_css('INFO', 'blue')} Processing Batch {i + 1} / {len(prompts)}",
chatbot, history, "Success", source_md)
prompt_str = f"{prompt.prompt_prefix}{prompt.prompt_main}{prompt.prompt_suffix}"
gpt_response = yield from ChatGPTService.single_call_chatgpt_with_handling(
source_md, prompt_str, prompt_show_user, chatbot, api_key, gpt_model, history=[]
)
chatbot[-1] = (prompt_show_user, gpt_response)
# seems no need chat history now (have it later?)
# history.append(prompt_show_user)
# history.append(gpt_response)
full_gpt_response += gpt_response
yield chatbot, history, "Success", source_md # show gpt output
return full_gpt_response, len(prompts)
@staticmethod
def split_prompt_content(prompt: Prompt, is_timestamp=False) -> list:
"""
Split the prompt.prompt_main into multiple parts, each part is less than <content_token=3500> tokens
Then return all prompts object
"""
prompts = []
MAX_CONTENT_TOKEN = config.get('openai').get('content_token')
if not is_timestamp:
temp_prompt_main = prompt.prompt_main
while True:
if len(temp_prompt_main) == 0:
break
elif len(temp_prompt_main) < MAX_CONTENT_TOKEN:
prompts.append(Prompt(prompt_prefix=prompt.prompt_prefix,
prompt_main=temp_prompt_main,
prompt_suffix=prompt.prompt_suffix))
break
else:
first, last = get_first_n_tokens_and_remaining(temp_prompt_main, MAX_CONTENT_TOKEN)
temp_prompt_main = last
prompts.append(Prompt(prompt_prefix=prompt.prompt_prefix,
prompt_main=first,
prompt_suffix=prompt.prompt_suffix))
else:
# A bit ugly to handle the timestamped version and non-timestamped version in this matter.
# But make a working software first.
paragraphs_split_by_timestamp = []
for sentence in prompt.prompt_main.split('\n'):
if sentence == "":
continue
def is_start_with_timestamp(sentence):
return sentence[0].isdigit() and (sentence[1] == ":" or sentence[2] == ":")
if is_start_with_timestamp(sentence):
paragraphs_split_by_timestamp.append(sentence)
else:
paragraphs_split_by_timestamp[-1] += sentence
def extract_timestamp(paragraph):
return paragraph.split(' ')[0]
def extract_minute(timestamp):
return int(timestamp.split(':')[0])
def append_prompt(prompt, prompts, temp_minute, temp_paragraph, temp_timestamp):
prompts.append(Prompt(prompt_prefix=prompt.prompt_prefix,
prompt_main=temp_paragraph,
prompt_suffix=prompt.prompt_suffix.format(first_timestamp=temp_timestamp,
second_minute=temp_minute + 2,
third_minute=temp_minute + 4)
# this formatting gives better result in one-shot learning / example.
# ie if it is the second+ splitted prompt, don't use 0:00 as the first timestamp example
# use the exact first timestamp of the splitted prompt
))
token_num_list = list(map(get_token, paragraphs_split_by_timestamp)) # e.g. [159, 160, 158, ..]
timestamp_list = list(map(extract_timestamp, paragraphs_split_by_timestamp)) # e.g. ['0:00', '0:32', '1:03' ..]
minute_list = list(map(extract_minute, timestamp_list)) # e.g. [0, 0, 1, ..]
accumulated_token_num, temp_paragraph, temp_timestamp, temp_minute = 0, "", timestamp_list[0], minute_list[0]
for i, paragraph in enumerate(paragraphs_split_by_timestamp):
curr_token_num = token_num_list[i]
if accumulated_token_num + curr_token_num > MAX_CONTENT_TOKEN:
append_prompt(prompt, prompts, temp_minute, temp_paragraph, temp_timestamp)
accumulated_token_num, temp_paragraph = 0, ""
try:
temp_timestamp, temp_minute = timestamp_list[i + 1], minute_list[i + 1]
except IndexError:
temp_timestamp, temp_minute = timestamp_list[i], minute_list[i] # should be trivial. No more next part
else:
temp_paragraph += paragraph + "\n"
accumulated_token_num += curr_token_num
if accumulated_token_num > 0: # add back remaining
append_prompt(prompt, prompts, temp_minute, temp_paragraph, temp_timestamp)
return prompts
@staticmethod
def single_call_chatgpt_with_handling(source_md, prompt_str: str, prompt_show_user: str, chatbot, api_key, gpt_model="gpt-3.5-turbo", history=[]):
"""
Handling
- token exceeding -> split input
- timeout -> retry 2 times
- other error -> retry 2 times
"""
TIMEOUT_SECONDS, MAX_RETRY = config['openai']['timeout_sec'], config['openai']['max_retry']
# When multi-threaded, you need a mutable structure to pass information between different threads
# list is the simplest mutable structure, we put gpt output in the first position, the second position to pass the error message
mutable_list = [None, ''] # [gpt_output, error_message]
# multi-threading worker
def mt(prompt_str, history):
while True:
try:
mutable_list[0] = ChatGPTService.single_rest_call_chatgpt(api_key, prompt_str, gpt_model, history=history)
break
except ConnectionAbortedError as token_exceeded_error:
# # Try to calculate the ratio and keep as much text as possible
# print(f'[Local Message] Token exceeded: {token_exceeded_error}.')
# p_ratio, n_exceed = ChatGPTService.get_reduce_token_percent(str(token_exceeded_error))
# if len(history) > 0:
# history = [his[int(len(his) * p_ratio):] for his in history if his is not None]
# else:
# prompt_str = prompt_str[:int(len(prompt_str) * p_ratio)]
# mutable_list[1] = f'Warning: text too long will be truncated. Token exceeded:{n_exceed},Truncation ratio: {(1 - p_ratio):.0%}。'
mutable_list[0] = TOKEN_EXCEED_MSG
except TimeoutError as e:
mutable_list[0] = TIMEOUT_MSG
raise TimeoutError
except Exception as e:
mutable_list[0] = f'{provide_text_with_css("ERROR", "red")} Exception: {str(e)}.'
raise RuntimeError(f'[ERROR] Exception: {str(e)}.')
# TODO retry
# Create a new thread to make http requests
thread_name = threading.Thread(target=mt, args=(prompt_str, history))
thread_name.start()
# The original thread is responsible for continuously updating the UI, implementing a timeout countdown, and waiting for the new thread's task to complete
cnt = 0
while thread_name.is_alive():
cnt += 1
is_append = False
if cnt == 1:
is_append = True
yield from ChatGPTService.say(prompt_show_user, f"""
{provide_text_with_css("PROCESSING...", "blue")} {mutable_list[1]}waiting gpt response {cnt}/{TIMEOUT_SECONDS * 2 * (MAX_RETRY + 1)}{''.join(['.'] * (cnt % 4))}
{mutable_list[0]}
""", chatbot, history, 'Normal', source_md, is_append)
time.sleep(1)
# Get the output of gpt out of the mutable
gpt_response = mutable_list[0]
if 'ERROR' in gpt_response:
raise Exception
return gpt_response
@staticmethod
def single_rest_call_chatgpt(api_key, prompt_str: str, gpt_model="gpt-3.5-turbo", history=[], observe_window=None):
"""
Single call chatgpt only. No handling on multiple call (it should be in upper caller multi_call_chatgpt_with_handling())
- Support stream=True
- observe_window: used to pass the output across threads, most of the time just for the fancy visual effect, just leave it empty
- retry 2 times
"""
headers, payload = LLMService.generate_payload(api_key, gpt_model, prompt_str, history, stream=True)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
response = requests.post(config['openai']['api_url'], headers=headers,
json=payload, stream=True, timeout=config['openai']['timeout_sec']
)
break
except requests.exceptions.ReadTimeout as e:
max_retry = config['openai']['max_retry']
retry += 1
traceback.print_exc()
if retry > max_retry:
raise TimeoutError
if max_retry != 0:
print(f'Request timeout. Retrying ({retry}/{max_retry}) ...')
stream_response = response.iter_lines()
result = ''
while True:
try:
chunk = next(stream_response).decode()
except StopIteration:
break
if len(chunk) == 0: continue
if not chunk.startswith('data:'):
error_msg = LLMService.get_full_error(chunk.encode('utf8'), stream_response).decode()
if "reduce the length" in error_msg:
raise ConnectionAbortedError("OpenAI rejected the request:" + error_msg)
else:
raise RuntimeError("OpenAI rejected the request: " + error_msg)
json_data = json.loads(chunk.lstrip('data:'))['choices'][0]
delta = json_data["delta"]
if len(delta) == 0: break
if "role" in delta: continue
if "content" in delta:
result += delta["content"]
print(delta["content"], end='')
if observe_window is not None: observe_window[0] += delta["content"]
else:
raise RuntimeError("Unexpected Json structure: " + delta)
if json_data['finish_reason'] == 'length':
raise ConnectionAbortedError("Completed normally with insufficient Tokens")
return result
if __name__ == '__main__':
import pickle
prompt: Prompt = pickle.load(open('prompt.pkl', 'rb'))
prompts = ChatGPTService.split_prompt_content(prompt, is_timestamp=True)
for prompt in prompts:
print("=====================================")
print(prompt.prompt_prefix)
print(prompt.prompt_main)
print(prompt.prompt_suffix)
|