Spaces:
Runtime error
Runtime error
File size: 1,005 Bytes
2befe53 a76862a 2befe53 a76862a 2befe53 a76862a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import openai
import whisper
from api_key import open_ai_key
llm = openai(temperature=0, openai_api_key='open_ai_key')
#This is another alternative, but this block allows for the detection of the language and it also provides lowever-level access to the model
def transcribe(aud_inp, whisper_lang):
if aud_inp is None:
return ''
model = whisper.load_audo('base')
#load audo and pad/trim it to fit 30seconds
audio = whisper.load_audio(aud_inp)
audio = whisper.pad_or_trim(audio)
#make log-Mel spectrogram and move to the same devcice as the model
mel = whisper.log_mel_spectogram(audio).to(model.device)
#detect the spoken language
_,probs = model.detect_language(mel)
print(f'Detected language: {max(probs, key=probs.get)}')
#decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
print(result.text)
return result
if __name__ == '__main__':
transcribe('audio_file_path', 'whisper-1') |