Spaces:
Runtime error
Runtime error
File size: 1,168 Bytes
2befe53 99caa7a 64f24b5 624e848 2befe53 6f88b99 2befe53 c508458 2befe53 c508458 99caa7a a76862a 99caa7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import openai
import whisper
import gradio as gr
import os
#need to make a change to be able to push
#This is another alternative, but this block allows for the detection of the language and it also provides lowever-level access to the model
def transcribe(aud_inp, whisper_lang):
if aud_inp is None:
return ''
model = whisper.load_audo('base')
#load audo and pad/trim it to fit 30seconds
audio = whisper.load_audio(aud_inp)
audio = whisper.pad_or_trim(audio)
#make log-Mel spectrogram and move to the same devcice as the model
mel = whisper.log_mel_spectogram(audio).to(model.device)
#detect the spoken language
_,probs = model.detect_language(mel)
print(f'Detected language: {max(probs, key=probs.get)}')
#decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
print(result.text)
return result
block = gr.Blocks()
def run():
with block:
gr.Interface(fn=transcribe, inputs="microphone", outputs="text")
block.launch(server_name='0.0.0.0', server_port=7860)
if __name__ == '__main__':
run()
if __name__ == '__main__':
run() |